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Problem 1
An infinitely long wire on the z axis has no current for ¢ < 0 and a constant current [

for t > 0 (in the positive z direction). As in an ordinary wire, where the fixed positive ions
cancel the charge of the moving electrons, there is no charge density for all ¢.

a)

Express the current density J(7,t) using d-functions and/or step functions.

We use cylindrical coordinates with (z, p, ¢). In this case the current is restricted to the

z axis so p = 0.
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It appears that J is infinite, and it is. But this is just a by-product of the approximation
for an infinitely thin wire carrying the current. The current density goes like I/A where
A is the cross-sectional area of the wire which is zero in this case. The 27 ensures that
JJ-dA=1.

What is the vector potential /f(f', t) for this current? Use the retarded Green’s functions
and evaluate all integrals. Hints: A(7,t) = A(p,t) where p is the normal distance to the
wire. As the answer is independent of z, consider the observer at z = 0.

We can use the formula given in the problem which uses the retarded Green’s function
to solve for the potential. We just need to know what |7 — 7| is to evaluate the integrals.
But since the current is restricted to the z axis and infinite in length, we can set our

observer to z = 0 for symmetry. Therefore the total distance is |7 — 7| = /p2 + 2'%.
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The radial integration is trivial with the -function, and the azimuthal integation simply
gives 2. With the #-function in our integral, this will limit our integration over the z
axis. It means that —\/c?t? — p? < z < \/c?t? — p?. However, we need to restrict our
solution to times after the change has had a chance to propagate to the observer, so there
will still be (¢ — £).
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We can see that this is independent of z and ¢, as we expected.



c¢) Find the magnetic field B (7, t) corresponding to E(F, t). Plot your answer in two ways; in
the first show the magnetic field at a fixed point as a function of time, and in the second
show the magnetic field at a fixed time as a function of the radial distance to the wire.

The magnetic field is the curl of the vector potential, but since our potential only depends
on p and ¢ and points in the z direction, there is only one derivative we need to calculate.
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Again, this is independent of z and ¢. We see that these are loops around the wire,
which is the usual result for a long current-carrying wire. Also, in the steady-state limit
t > p/c, this approaches the traditional result B = %. It should be noted that the term

with the d-function will not contribute to the solution because the sinh~' factor is zero
when it’s own argument is non-zero, but there is a disconitnuity in the solution at this
point. Now let’s look at the plots.
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Figure 1: A plot at a fixed distance from the wire. Time is plotted in units of 2. The
magnetic field starts at zero, undergoes an initial spike, then quickly goes to its steady-state
value g, indicated with the dashed line.

d) Find the electric field E(7,¢). What is its behavior at large times?

There is no net charge present, so the scalar potential is zero. Then using the formula
for the electric field, we find
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Figure 2: A plot at a fixed time over the distance from the wire. The field is only non-zero
for a radial distance less than ct, which corresponds to 1 in this plot. We can see the field is
very large near the wire (where it goes like 1/p) and out at the initial spike when the current
was turned on. The dashed line indicates the steady-state value of the field.
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The electric field is pointing in the —z direction. Looking at the Poynting vector, E x B,
this points in the +p direction, so the wire is radiating outward as we expect. Again, the
d-function term will not contribute. For large times ¢ > p/c, the electric field will die off.

E(t = 00) ~ == -2 — 0. (5)

In conjunction with this, the magnetic field will approach its steady-state value.



