Classical Mechanics Problem 1
Solution

Choose system of coordinates moving with the container where z-axis is along AB
line. In that system the angular velocity is given by:

1= U._)‘l + (32 = (wg;wl coswgt; —Ww1 sinwzt)

Net force acting on a fluid element of mass m in the non-inertjal coordinate system
is:

— 2
Fnet=m§‘+2mﬁ'xﬂ+—u+

37 2 m(r x )

The hardening resin moves very slowly with #' ~ 0 such that we can ignore Coriolis
force

2mi x Q0
The remaining forces need to be averaged over many rotations (time)

mg = —mg(cos wyt; sinw;tsinwst; sinw;t cos wat)

averaging:

(mg) =0

For w; # wa:

(m(7 x 1)) = m# x (@) =0

We are left with one force that does not average to 0!

(I x 7)2 = Q%2 - (.7)2

(Q x )? = (w? + w2)r? — (zwy + yw; cos wyt — 2wy sin wat)?
Averaging with (cos® wt) = 1, (sin® wt) = 1 and (sinwt coswt) = 0 we get:

- 1 1
(0% 7?) = (@ + wd)(a® + 97 +27) - (Pd — SoPuf — L 2%d))



Classical Mechanics Problem 1 Solution, Continued

This gives the expression for the net force acting on resin element:

-

o mad, 45, o
Fret = Zﬁ(wlx +(

+ud)(? +2%) = — U

2
ot §
2

The force is due to an effective potential U(F). The resin will harden with the surface

being an equipotential line U(F) = const. The final shape will be an ellipsoid symmetric
around AB axis.



Classical Mechanics Problem 2
‘Solution

For motion along y-axis one has expression for potential energy:

U(y) = k(v/L? + y2 — Lo)?

Expanding to y*, ignoring constants etc one gets potential:

_ Lo 2 kLo
U(y)——k(L 1) y +E!J
or
U(ly)=-By?>+C y*
with
Ly kLg
= k(=20 _ c=220
B = k( T 1) and YN
Equations of motion in terms of y:
. d 2
miy = -—@U(y) — myow* cos wt

Substituting s = y — yo cos wt we get:

ms = -—d—sU(s + yo cos wt)

Since w is very large the free oscillations of the ball will occur in an effective poten-
tial obtained by averaging U(y) over many periods of oscillations of the external force.
Expanding and averaging various cos wt™ terms we get:

((s + yo coswt)?) = s% + const
and

ay _ 4, 65748
((s + yocoswt)?) = s* + —  tconst

The effective potential will be then:



Classical Mechanics Problem 2 Solution, Continued

Uess(s) = —Cs* + B(s* + 3s%y2) + const
or

Uess(s) = As® + Bs*

where

A=3By-C
A can be positive or negative, the free oscillatory motion will depend on the sign of
A
ForA>0o0r T =y2 > % the equilibrium point will be at so = 0 and the frequency
of free small amplitude oscillations will be w = %. For A<QorT < % there will be

two equilibria at sg = + % and the frequency of free oscillations will be w = 4/ _m—A
Part (e):
In case of motion restricted to z-axis the potential is:
U(z) = (k/2)((L — Lo) — z)* + (k/2)((L — Lo) +z)*)

or

U(z) = kz? + const

Following similar procedure to previoous parts (variable substitution, averaging etc)
we get effective potential:

Uess(s) = ks® + const

With s = £ — zg coswt

This means that the small oscillations will not be affected by the presence of high
frequency external force.

The mass will oscillate around z = 0 with frequency w = /2k/m



Electromagnetism Problem 1
Solution

Time varying magnetic field will induce electric field. This in turn will lead to current
flowing in resistive medium.

- _1—‘1_
J(F)—pE(”)

In the cylindrical coordinate system the induced electric field will have only tangen-
tial component 1y where 1, X 19 = 2. Electric field will depend only on the distance from
the center of the cylinder r.

From Faraday’s Law:

d
2nrEg (T) = - 5 QB,enclosed

®p(r) = / 2nr'dr’ B,(r')
0

After some elementary calculations and assuming that we have only applied magnetic
field (no self-induction approximation) we get circular currents flowing around the axis
of the cylinder:

- Borwusinwt «
)= 22
3(7,t) 2 8
The effect of self inductance will appear due to magnetic field created by the induced
currents. Since the induced magnetic field will in turn induce the electric field the current
distribution will be modified.

The induced magnetic field can be calculated by dividing cylinder into thin solenoids.
The contribution to the magnetic field of a solenoid of radius r and thickness dr will be:

roj(r)drz if v’ < r;

asB)e) - {

0, otherwise.

The induced magnetic field is then:

AB(r) = / d(AB)(+)dr’

poB,w sinwt (R2 — r2) A

AB(F) = 2 5 2



Electromagnetism Problem 1 Solution, Continued

Now we need to calculate again the flux, induced electric field and finally induced
current density.

r

= ¢, 1 { HoBzwsinwt (R2_r12
T

Final correction to the current density is then:

Aj(F) =

oB.rw? cos wt (R2 rz)
2 4

4p2?

The effect of this w? correction will be negligible (to within O(1)) if:

wR?
Fo <<1
2p
or
2
w << p




Electromagnetism Problem 2
Solution

Set up geometrical optics:

s,

Calculate deflection angle:
¢ = 180° + 20 — 48
From Snell’s Law:

B = arcsin (w)
n

such that

#(a) = 180° + 2a — 4 a.rcsin(Sln =

)

n

The parallel light shining on the drop within a circle corresponding to angle range
o and a + da will deflect into a cone with opening angle from #(a) to ¢(a + da). The
total energy falling on the drop within this angle range is

dI = 27 I, R? sin a.cos ada

Fraction f of this energy will be deflected into the output cone.

The total area of the cone cross section at a distance L from the drop is

Stor = 2w L% sin ¢do

Detector of area S at a distance L from the drop will receive energy:



Electromagnetism Problem 2 Solution, Continued

E = mroZﬂ'Rz sin acos ada

or

- fIoSR? cosasina
L2 {%ﬂsinq&

The rainbow appears since l%ﬁ-[ can be 0 at and angle « between 0° and 90°!. E will
not be infinite due to light diffraction but it will be very large and certainly larger than

the neighboring values of ¢. The maximum angle depends on n and results in different
angular radius for different colors.

Let’s calculate the precise location of the extremum angle:

do 4 1
— =2— —cosa
da n sin? o
1 - '_ng

The derivative is 0 at ag such that

n? -1
cos ag =
0 3
and
) 4 —n2
sinag =
0 3
The angular radius x = 180° — ¢ is then:
. [4—n? . [4—n2
X = 4 arcsin — 2arcsin
3n? 3
For the refraction coefficients given in the problem we get:
Xred = 26.66°
and

Xviolet = 25.67°



Statistical Mechanics Problem 1
Sohition

(a) Up to a normalization factor A,
q2
— Ae [m +mgz] /kT

where k is the Boltzmann constant. Then

o0 (o o]
N=/ dz/ dg P(q,2)
] —00
o0

— A/ dze-—mgz/kT /00 dqe—q2/(2ka)
0

— o0

:A(k—T) V2rmkT .

mg
So
A= _m™
V2rmkT kT’
and then

N mg -—[%—f-mgz]/kT.

P(g,2) = ——— 3
(2.2) V2rmkT kT ¢

(b) The magnitude of |g| at a given value of z is determined by conservation of energy:

2
..q_+mgz:mgh > q2=2m2g(h—2) .
2m
Furthermore, the probability of finding the particle in any interval dz is proportional to
the amount of time the particle spends in that interval, which is inversely proportional
to the speed at that location. So, up to a normalization constant B,

Pi(g,2|h) = \/}%_ [¢ (¢- VemZs(h=2)) +6 (¢ + vamPg(h—2))] -

Normalizing,

/hd /ood Pi(g, z|h) ZB/h dz 2B/h ds
z q q,z = = T
0 —o0 ' o Vh—=z o Vs



Statistical Mechanics Problem 1 Solution, Continued

where s = h — 2. So
1=2B(2Vh) = B=-——

and

Pilaslh) = s [# (= vEnTalh —2)) + 8 (+ VEmPa(h = )]

h(k

(c) The answer to (b) gives the probability density for a single particle with specified
maximum height k, so now we need only sum over all the particles with a distribution
p(h). So

Pla.2) = [ " dhp(h) Py (g, 2|h)

= [ ane) s [ (s= vEm = 2)) + 6 (4 + VEmTgE)]

h—=z

For g > 0 the first §-function on the RHS contributes, with the constraint
2

2 _ o 2 _
¢“ =2m g(h-2) = h—z+2m2g

The integration over the é-function produces the Jacobian factor

/d:c6

where f(zo) = 0. In this case

1
_f
dz

I=Z9

24 h—
10y =0 Varglh=a) — |f=L e sophe

For ¢ < 0, the second é-function on the RHS contributes, with exactly the same value.
So,

1

P(g,2) = m?(h)

q2
h=z+ Fmg




Statistical Mechanics Problem 1 Solution, Continued

(d) Starting with the answer from (a),

2
Plas) = — N ma &+ maz] [kr

e = V2rmkT kT ’
we use

q2

h =
z+ amig

to express p(h) as an integral:

h co q2
p(h):/(; dz /;ooqu(q,z)éS(h—z—zng) ,

so
oo R _|4® ] 2
— 4+ kT
p(h) = qu@/ dze [2"’ mgz/ 6<h—z— q2> .
—o0o  V2mmkT kT J, 2m?g
But
h i ] 2 2
/ dze [2m+mgz /kT5(h—z— : ):e_mgh/kT0<h_ : ) ;
0 2m?g 2m2g
where e
0(z) = { 1 ifz>0
0 otherwise .
So,
N Mg o mgh/kT /oo ( g )
h) = ———— —= ¢~ ™9/ dqd (h—
p(h) V2rmkT kT oo ! 2m2g
N mg —mgh/kT
=—_— ¢ 2v/2hm?
V2rmkT kT ( g)
2N

= 22 (52)" Vhememn




Statistical Mechanics Problem 2
Solution

(a) If the cube has sides of length L, then the spatial wave functions e 7/* must be
periodic functions with this period in each direction. Thus,

pzL/h =27n, ,

where n; is an integer, with analogous relations for Py and p.. Therefore

where n is a vector of integers.

The sum over all states can be represented as a sum over the occupation numbers
{Ng} for each of the allowed momenta 7. Since the allowed momenta are countable, we

can imagine numbering them as p;, where j =1,2,... . Then
Z=Y%...e-E-mmyeT
N: N,

Since N = ) N; and E = ) N; Ej;, the expression can be written as an infinite product:

Z — Z e—(El"#)Nl/kT Ze_(Ez—#)Nz/kT el
Nl N2

Then

InZ= Z In Ze”(EJ'—I‘)NJ‘/kT
J

N;

For bosons, the sum over the occupation numbers N; extends from 0 to oo, giving a

geometric series:
1
InZp =) In { 1= e—(E,'—il)/kT} :
J

For fermions, the sum extends only over 0 and 1, so

InZp = Zln {1 + e_(E"_“)/kT} .

J

To convert the sum over j to an integral, note that j is really a shorthand for the integer-
valued vector 7, so

s-srrfe-(4) [



Statistical Mechanics Problem 2 Solution, Continued

Comparing with the definition of f(p,m, x,T), one sees that

_*(21:7;)3 In (1 — e—(Eﬁ‘l")/kT) for bosons

f(ﬁam)ll'aT) = {

(21r1h)3 In (1+ e~ (B—#)/kT)  for fermions ,

where for relativistic particles

Ez = \/]ﬂz c? + m2ct .

For a dilute gas, e~ (Bs—#)/FT 1, so both expressions reduce to

e~ (Es—u)/kT

. 1
f(B,m,u,T) = 2rh)?

Taking also the nonrelativistic limit for the energy,

1 —(mc2+lgg—u>/kT

fdass(ﬁa m, [, T) = __27l'h)3 e

—_

(b) For this case the integration can be carried out using the formula at the start of the

question, so

4 —(mc?—
In Zcjass = (2—7rh—)§e ( “)/kT(Zwka)3/2 .

From the definition of the partition function, one sees that

19z _(N)
Zou kT’

{0

(N) _ (2mmkT)%/? o~ (me?—p)/kT
v (2nh)3

n =




Statistical Mechanics Problem 2 Solution, Continued

(c) The number density of each of the three species can be expressed in terms of its
chemical potential by using the answer from part (b):

3/2
n, = (27rmnkT)/ e(pn—mncz)/kT

(27R)3
n. — (ZmekT)3/2 e(pp—mpcz)/kT
d (27h)3
3/2
no, = @EmakT)*2 (o oy

(27h)3

I have included a factor of 2 in the expressions for n, and n,, because each particle is

spin-%. Each spin state contributes with the same density as a spinless particle. The

ratio is then given by

2,2 3,.3 9/2
npNp  Mpmy kT 2
na \/Ehgmzﬂ (_ﬂ._ €xp {— [(Zmn +2my — my)c +

+ (Mo — 2pn — 2u,)] KT} .

The binding energy B is defined as the energy that is released when an alpha particle is
formed, so

2mnc? + 2m1,,c2 =mqc?+ B .
Since the sum of the chemical potentials on the left-hand side of the reaction equation
must equal the sum of the chemical potentials on the right-hand side, we have

2pn +20p = po »

where I used the fact that the chemical potential of the photon is necessarily zero, since
the photon carries no conserved quantities. Using the two relations above, the expression
for the ratio simplifies to

9/2
nang _ mymy  (kT\¥ ¢—B/KT
Na \/ihgmi/z n -

It is a good approximation to set m, = m, and m, = 4m, in the prefactor, which gives
the simpler expression

nin2 _ 1 (mka)g/z ¢~ B/KT
Na 8\/§hg T

Either of the boxed answers is completely acceptable.



Quantum Mechanics Problem 1
Solution

(a) The A and B spins can be described by states of definite total AB spin as
[SaB=1,M=1) = |11)

1
ISap=1,M=0) = —-[I11) + 1) ]

ISAB:]-)M:_l) = Ill) )

where the ket vectors on the right are in the basis |mamp), with m = :t% denoted by
T and |. To combine this spin-1 with the spin-% of particle C, we first construct the
Stot = 3/2 states in terms of the |SaBMsm) basis, using the J_ formula given at the
start of the question:

IStot:%,M:%> = '11 %%

Vi 3-8 d ISm=d M=) = I TTT0 104 1)+ 3 E -3 (-1) 113k

VB [Sm=d,M=4) = V2 103 1)+ 11 3-3)

[Siov=3.M=1) = /3 [1043) + /T [113-1) .

SO

By orthogonality,

[Siov=g. M=) = /3 103 3) =/ [11 12

The quantum state [¥) is the IStot:%,M =%> state, but we need to replace the SaB
spin-1 states with their expansion in terms of 2 spin—f1 states, as given above. Thus, in

terms of the |m  mpmc) basis,

@ = E{In+um ) -2y .

Summing the probabilities (not the amplitudes!) over the unmeasured degrees of freedom
mp and mg,

[y

. 5
5 -

Wi

Pma=1)= ) [(1 mpmc|®)® =

mpmcge

6

(b) The state |¥) is an eigenstate of the z-component of total angular momentum J,.
Therefore it changes by only a phase when rotated about the z-axis, so the expec-
tation value of any operator must be invariant under such rotations. It follows that

(¥ |sp,z) ¥) =0, so

P(spa=1)= .




Quantum Mechanics Problem 1 Solution, Continued

(c) The operator corresponding to this measurement is Sc,z, rotated counterclockwise by
§ about the y-axis. Equivalently, we can measure Sc,z in a state which is obtained by
rotating |¥) by an angle —@ about the y-axis. Since |¥) is a spin-1 state, its rotation
can be described by the matrix R,(6) given at the start of the problem. However, we
will need to know how to write the Mtot:—% state, which we can find by applying the
lowering operator:

) = Sw=f, M=3) = 3 103 ) = /3 114-3)

S0
VEd- 1 () [S=p M=) = [T [ViZ=0- (U114
Vi - (Do) -3 viz=T0ji0d-4)]
or
[Swor=g.M=-4) = /3 [1-134) /31044
Then

V) = Ry(-0) |¥)

= Z ,Stot=%,M> <Stot:%,MlRy(—0)|5tot=%,M'> <Stot:%,M’|‘I’>
M,M’

— [[Stot:%,M:%>,lStot:%,Mz—%>] [cos %0+iaysin %0] [(1)]

cos %0 J

:[lst“:%’M:%)’lStot:%,M:’%> [ -1
—sm§0

= lStot:%,M:%>cos %0 — lStotzé,Mz—%>sin %0
= [VE o3 ~VE13-1)]cos o
~[VE I3 -3 og-plsinto.

Since we are interested in spin C, there is no need to expand the (SaB, M) labels used
here to describe the first two spins. The probability that spin C is up is given by

P(mc =1) = Cg 0 [(S M LLW)|* = Lcos? (16) + 2sin® (19)

1 s 21
—§(l+sm 50) .




Quantum Mechanics Problem 1 Solution, Continued

(d) The statistical properties of mixed states are completely described by the density
matrix. If the system has probability p; of being described by the state vector |v;), then
the density matrix is given by

p= Zjlzp» pi (%] -
For state (i),

Since p is proportional to the identity matrix, this state is completely unpolarized.

E)
I
|
D[
[e]
N

For state (ii),

b d 2r

1 )
o= [Tsinoao [ ag 1w(0,0)) (v(0,9)
T Jo 0
™ 2m cos?1lg sin 16 cos 10e'¢
:i/ sin0d0/ qu( 2 202 )
4 Jo ) sin %0 cos —2—0e"¢ sin 50

_1f1 0
z2\0 1/ -

In carrying out the integration over § above, note that

T T 0
/ sin9df cos? 19 =/ sin 8 df (l—ﬂ) :
0 0] 2

The cos § term integrates to zero over the two quadrants, so

T T
/ sin 8 d@ cos? %0:1/ sinfdf =1.
0 2J/o

™ m 1_ 0
/ sin 8 df sin® %0:/ sin 8 d6 (ﬂ) =1
(4] (¢ 2

Thus, the density matrix for this state is also proportional to the identity matrix, and so

Similarly,

the two states are indistinguishable.




Quantum Mechanics Problem 2
Solution

(a) Remembering that [z, p] = 7, the Hamiltonian can be factorized as

H, k : \/Z T + 1k
= —I— — — T+ —= Shw |
° 27 Vam! 2" Vam') T2

where
[ k
w=14/—.
m
If we set
ot =L [ JE, _ ¢
hw 2 \/Zmp
o= 1 E n )
vVhw 2 \/2mp ’

then Hy can be written
Ho = hw (ala+ 1),

as desired. Furthermore
’ hw 2 Vem )\ V2 V2m
1 k1
= ——— 2 —— =
A 4% \/;\/2_m—h 1

(b) Adding the equations above for a and af,

as desired.

S0
= Z—Z (a, + a,T) ,
and then b
Hy(t) = eﬂe_)"5 (a + al)
= e%%e_’\t (aTz +ala+aal + a,2)

h
= 55:;8_” (a,f2 + 2afa + a? + 1) .




Quantum Mechanics Problem 2 Solution, Continued

(c) Time-dependent perturbation theory is most easily carried out in the interaction
picture, in which the 0-order time dependence is incorporated into the operators instead
of the states. Starting with |¥(2)) in the Schrédinger picture, the interaction picture is
given by

[®7(2)) = ot/ |w()) .

Then a1 (t)) 9|¥(¢))
. 1 — I iHot/R hetHot/R 1= 0)/
zh——at Hoe [¥(2)) + ihe It
= Hot/R (_Hy + Ho + Hi(t)) |9(t))
= e Hot/RH, (8)e = Hot/M W (1)) = Hy(8) |91(2)) ,
where

Hy(t) = e'Hot/h g, (1)~ Hot/

The perturbative solution to this equation gives

wite) =7 {ex (-5 [ i) ar) J o

Here T denotes the time-ordered product, which means that when the exponential is
expanded as a power series, the factors of H 1(tn) - -- H 1(¢1) that occur in the nth term
should always be ordered so that t, > t,_; > ... >t; . To express H; (t), use the raising
and lowering properties of at and a to show that

ezHot/hae—zHot/h —_ ae—twt

et Hot/hyt o—iHot/h _ t iwt ,
SO
hw

ﬁ] (t) = Eﬁe_)‘t (af2e2iwt + 2(11'6, + a2€—2iwt + 1) )

To lowest order in €, at arbitrarily late times,
) e .
0

where

Use



Quantum Mechanics Problem 2 Solution, Continued

so
1

A — 2w

(n=2¥1(c0)) = ~1 4V

The probability is then

242

P=2) = ot 4y

where A is given by the boxed equation above.

(d) Since H; (t) changes the quantum number n only by 0 or +2, only even values of n
are ever achieved. So

P(n) =0 if n is odd.

The state |2m) is reached in lowest nonvanishing order by the mth term of the expansion,
where only the term in H(t) proportional to at? contributes. Since this term commutes
with itself, the ordering of factors is irrelevant, so to this order in perturbation theory we
can ignore the time-ordering of the product. Thus,

(2m|¥r(c0)) = (_—nﬁ: {%A/Ooo e~ gZiwt dt}m (2m Iafzml n=0)

- (—I)m( : ))m Vit

m! \&(} - 2iw

Finally,

m!2 A2 +4w?2




