G eneral Exam Solutions
Fall 124g

Problem 1 (Mechanics)

A uniform string of length L is tied at its two ends along the z axis and stretches
from z = 0 to z = L. The mass per unit length of the string is p. For times t < 0
the tension is a constant, Tp, and the string is given to be oscillating in the form

y(z,t) = Asin(wi) mwmﬁmv, ‘NA 0, (1)

where y is the transverse displacement of the string.

a) Write the Lagrangian L for a string of mass per unit length p and tension
To. Note that in addition to kinetic energy from the motion, there is potential
energy from the stretching of the string. From this Lagrangian find the Lagrangian

equation of motion of the string. S
b) Using Newton’s second law applied to an infinitesimal piece of string rederive
the equation of motion obtained in part (a). v

¢) What is the value of the frequency w in the expression (1) for y(z,£) 7

We now consider the possibility that the tension is time dependent. For this
purpose one may simply replace Tp by T(t) in the Lagrangian and in the equation
of motion. In the time interval 0 < t < to the tension is increased to a slightly
higher value Tp(1 + ¢€), with ¢ a small constant, after which the tension returns to
the value Tp.

d) Assuming a simple ‘separation of variables’ form y(z,1) = X (z)Y (t) write out
the equations for the functions X (z), Y (¢). Solve for X(z)..,

e) Rewrite the equation for Y'(t) in the form mmmw 4+ w?Y = ..., where the dots
represent the perturbstion term linear in e. Using first order perturbation theory
in the small constant e, solve for Y(t) for times ¢ > to. HEE
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Useful information The Green's function for the equation .mmw +uwly=0is
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mew?@ﬁmi" for ¢t >¢
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=0, for t<t.
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G(t,t)

_., 3 2f |
It satisfies SCUEE) 4 w2G (4 ) = 6(t = t').
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Problem 2 (Mechanics)

. Consider a prolate spheroid with no external forces acting on it. At t =0 the

spheroid is given an angular velocity of magnitude w about its center of mass, in
a direction which is inclined at angle o to the axis of symmetry.

ey
My

Use ‘body axes’ such that the unit vector 7z points along the symmetry axis of
the spheroid, and the unit vectors 7i; and fig lie in the plane perpendicular to this
axis. The moments of inertia are [} = Io=Iand I3 = (1 —-a)l, where 0 <a <1
is a constant. ‘

a) Write the angular velocity vector @ at ¢ = 0 using the unit vectors i, 742 and
fi3. Assume that this vector lies in the 7; - i3 plane at ¢ = 0.

=

b) Find the angular momentum vector L at ¢ = 0 in this basis.

-

The space cone is generated by the motion of & around L, and the body cone is
generated by the motion of & around the symmetry axis of the body. The half’
angle of the body cone is & and the half angle of the space cone is § (see figure).
¢) Find the half angle # of the space cone in terms of @ and a.

d) Find the angular frequency {, for the rotation of & around the axis of symmetry
of the spheroid (as seen by an observer fixed on the spheroid, & spins around the

symmetry axis).
e) Find the angular frequency §2, for the rotation of & around L. Give your answer
in terms of [ and the magnitude L of L.
Useful information:
dl dL .
R el [ e (o] M.m,
?;% m%v@ T

where ‘s’ denotes space fixed coordinates, and ‘b’ denotes body fixed coordinates.







M.W -1 = Q,T o)~ _ﬁ..\uw T =—aT
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Mu&m + I, W ﬁ%@;ﬁq = 0

T +wy(@l) =0
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Problem 1 (Electromagnetism)

An infinitely long wire on the z-axis has no current for ¢t < 0 and a constant .
current I for ¢ > 0 (in the positive z-direction). Asin an ordinary wire, where the -
fixed positive ions cancel the charge of the moving electrons, there is no charge *

density for all ¢.

a) Express the current density J(7,t) using d-functions and/or step functions.
b) What is the vector potential A(7,t) for this current? Use the retarded Green’s

=

functions and evaluate all integrals. Hints: A(7,t) = A(p,t) where p is the
normal distance to the wire. As the answer is independent of z, consider the
observer at z = 0. .

¢) Find the magnetic field B(7,t) corresponding to A(7,t). Plot your answer in
two ways; in the first show the magnetic field at a fixed point as a function of

time, and in the second show the magnetic field at a fixed time as a‘function
of the radial distance to the wire.

d) Find the electric field E(7,t). What is its behavior at large times?

Useful Formulas:

-~ _la 108 @
VX 4= %m \amwﬁ Bs
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Problem 2 (Electromagnetism)
A plane wave travelling along the positive z-direction is incident normally on

a uniform material filling the half-space z > 0. The material has & constant
conductivity ¢ > 0, and e = p=1.

The incident field (for z < 0) is of the form
Bl t) = Re { B e'®* 0, | M

with k = % and Ep a real constant. Consider the simple ansatz for the wave in
the conductor (z > 0) .

BonlF,) = Re { Eulr) e} @

Here, the possibly complex vector E.(7) is to be determined. For z < 0 we assume -
that in addition to the incident wave there is a reflected wave of the form

=0

Bl t) = Re{E &R 0g ), B

propagating in the (—z) direction. Here E- is a constant to be found.

a) Consider Maxwell’s equations for the time-independent fields Mwaw ‘w.mﬂmuﬁ,._wp :
the conducting media. Use J, = 0 E,, and show that the differential equation
for E.(7). takes the form A =k

?N + K T + s.mﬁv w E.(A =0

W

b) Assume now that the fields in the conductor are of the form

Mﬁm& = mﬁmmmaﬁﬁ.m
B.(F) = B.eP%éy.
What is the value of @ in terms of k,o,w 7 Find B, in terms of E.

¢) For the reflected wave find the time-independent magnetic field in terms of
the constant E, introduced in (3).



[Y T&

d) What are the relevant boundary conditions for £ and B at the boundary ?
Set up and solve the system of equations that determine E, and E; in terms

of Ey, k and f.

¢) Using the stress-tensor Tj; find the pressure on the conducting well due to
the radiation. (Draw a sketch showing the surface you will use) Express your
answer in terms of E¢, k and f. .

Useful ?m@agmﬁaﬁ

V x (Vx&) =V a-Va

VxB=

T 4r

1 1 - -
Tij = — “Hm,mm_u, + B;iB; — 50 A_.m._m + _m_wvuw
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Statistical Mechanics: Problem #1

1. The Dieterici equation of state relates the pressure P of an interacting gas 8 its
temperature T, and specific <o~§m v=V/N, by

ksT

P nﬁﬂ.@.% Exa

where a and b are positive constants.

(a) Sketch typical isotherms P(v) predicted by the above equation for high and _os
temperatures. What is wrong with this equation? mwgor the isotherms: of m
real gas at low tempertures.

(b) Find the coordinates (Fe,v., T¢) of the critical point of Q:m gas.
(c) Find the singular temperature dependence of the isothermal mﬂmomﬁg@é.&w

1 Ov
Kr=-3%p|,

on approaching the critical point T — T, at v = v,.

EVFmgﬁrmwammmﬁmw?ﬂvos aam ozaa& 50%9,3 %
<mEmEnm order in (v —1ve).
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Statistical Mechanics: Problem ##2

2. Consider a system of non-interacting spin 1 /2 fermions at temperature T', in volume
V, and chemical potential p.

(a) Show ‘that the average occupation numbers of single-particle states of mbmamw
p £ A are related by 4

(n(p+ A)) + (n(p — A)) = 1

where A is any constant energy.

Now for the rest of this problem, assume that the single ﬁmﬁuowm mgnmm come in wm: Om
positive and negative energies, ; , e

ex(k) = thclk|

independent of spin, and that at T = 0 all negative energy states are occupied mﬁmmb
positive energy states are empty. :

(b) What is the chemical potential of this system at m.. = oq dwm gm Hmmc? from.
(a) to show that x does not change with T. ‘ :

(c) Show that the mean total excitation energy of this system at non-zero ﬁmgwﬁr
ature satisfies

&m%ﬂ m+A\av (o , 1
E(T) - = ﬁ\\ where f= ——
B(T) mxwﬁﬁg )] +1 " kT
(d) m.,\&smam the heat capacity 9\ om itm system, using

\&&nllslaw IMMW
o mf_.;uso
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Quantum Mechanics: Problem #1

1. Consider a particle of charge ¢ and Bmmm m confined to the z-y plane and subject to
a harmonic oscillator potential V' = -3@ ?(z? + y?) and a uniform electric field of
magnitude E oriented along the ﬁoﬂﬂé z-direction.

(a) What is the Hamiltonian for the system?

(b) What are the eigenvalues and associated degeneracies for this Hamiltonian?

Now assume the particle is in the mHoEpa state of this system.

(c) If the electric field is suddenly turned off, mwoﬂ that the E‘owmgwa\ om mb%mm;
the particle with energy (n + 1)hw is given by a Poisson apmﬁ:wsﬁob ;

mlyv,n
nl

P(n) =

Find A.

[You 3@% find the following expressions useful:

, H H\m
ay = Aslllv ASS&!&PV
’ 2mwh . .

and exp[A + B] = exp(A) exp(B) exp Aiwgw EV where [A, B] is a o..umBUmw.%m
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Quantum Mechanics: Problem #2

2. A molecule consisting of three fixed identical atoms in an equilateral triangle captures

an extra electron. Assume that in this system the electron is described by a Hamil-
tonian H. Ignore the spin of the electron and any other electrons already present:
in the atoms. To obtain the eigenstates of this captured electron we use a simple
basis set consisting of one spherically symmetric localized orbital |S;) on each atom,
i and assume that they are orthonormal (i.e., (Si|S;) = 6i;).

(a) Suppose that (Si|H|Ss) = (S2|H|S3) = A.mm_m_mpv. = V are the ,oﬁmw non-zero
matrix elements in this basis set, find the energies for the captured electron.

[Hint: Use the fact that one of the eigenvalues is 2V, which is. mos-mmmgmgam.

(b) Since H is invariant under rotations by . construct all simultaneous eigen
states of energy and rotation for the captured electron. What are the rotational
eigenvalues for each eigenstate? ey
[Hint: The rotation operator mAmumv satisfies R = 1]

(c) Suppose that at time ¢ = 0 the electron is captured completely by atom #1 in’
the state |S;).. What is the probability of finding this electron on atom #1 at
a later time ¢? Describe the motion of this electron. L
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