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' September 9, 1999
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1. This examination is divided into four sections, Mechanics, Electricity & Magnetism, :
Statistical Mechanics, and Quantum Mechanics, with two problems in each. It is advisable
to carefully read both problems in each section befote muaking vour choice. Submit ONLY
one problem per section. IF YOU SUBMIT MORE THAN ONE PROBLEMFROM A
SECTION, BOTH WILL BE GRADED, AND THE PROBLEM WITH THE LOWER |
SCORE WILL BE COUNTED.

.Use a separate fold of paper for each problem, and write your name on each fold. Include

iroblem o w1 h solution. :
3}

3. Calculators may be used.

38

4. No Books or Reference Materials May Be Used.







Mechanics Problem 1

A particle of mass m moves in one dimension. Its position is given by the coor-
dinate z. When 0 < z < I, no force acts on it. When z < 0 a force +F (F >0,
independent of z) acts, and when z > L a force —F acts. The Hamiltonian is

Hz,p) = 2=+ V(2).

(a) Sketch a graph of V(z).

(b) The motion is periodic. When the total energy is E, sketch the trajectory in phase
space (i.e., z,p space) for one period, marking the direction of motion along the
trajectory. '

(c}) The bimit F ~ oo corresponds to the particle making elastic collisions with fixcd
walls at z = 0, . Sketch the phase-space trajectory in this imit and calculate the

area A of phase space enclosed by it as a function of E.

{d) Now suppose L slowly increases with time, L(t) = Lo + ut, with u much less than
the speed of the particle. The limit F — oo now corresponds to elastic collisions
with one fixed wall and one moving wall. In this limit calculate the change in the
speed of the particle after one collision with each wall. Hence show that in the
imit v ~» 0 the quantity A(E) of part (c) does not change with time, even over
times of order Lo/u (i.e., A is an adiabatic invariant).




Mechanics Problem 2

An idealized gyrocompass consists of a disk spinning about an axis through its cen-
ter pérpéndfcular to the disk. The axis is mounted so that the center of the disk is fixed
and the axis is constrained to be horizontal, but can move freely in the horizontal plane,
so that the only torque acting on the disk due to the constraints is about the horizontal
direction perpendicular to the axis of the disk. The whole system is fixed al a point on

the earth’s equator. Define a set of axes rotating with the earth as shown:

¥ pel

3 (upl)

so that 3 is vertical, 1 is horizontal pointing north, and 2 is horizontal pointing west.
Let the axis of the disk le in the (1,2) plane at angle ¢ to 1. Definea set of axes

1, 2, 3 as shown.

T

2
leeating ¢(1) as if it were known, write an explicit expression for the angular velocity
of the 1'2’3 axes in the coordinate system of your choice, including the contribution due
to the rotation of the earth. The angular velocity of the disk is the same as the angular
velocity of the axes, plus a spinr about 1. Let the total angular velocity of the disk have
component § about 1'. Let the moment of inertia of the disk about 1’ be I and about
any axis in the plane of the disk (i.e., in the 2', 3 plane) be 1. Write an explicit expres-
sion {or the angular momentum of the disk and calculate its time derivative. Use the
fact that the torque is about the 2’ direction to show that § is constant and that ¢ = 0
ot 7 are the only values for which ¢ can be constant. Calculate the frequency of small
oscillations about whichever of these values is stable. (Assume § is much greater than
the earth’s spin.) Estimate what the spin about the axis should be (in rps) to give an

oscillation period of 10 seconds.




~ Electricity and Magnetism Problem 1

a) A simple oscillator consists of a capacitor €' and an inductor L (Figure i). C con-
P , g

F iguré i

sists of two paralle] plates of area Ac, distance apart d¢. Lis a coil of a total of
N turns wrapped around a cylinder of cross-sectjonal area A L and height d;. The
period of oscillation is Tp. Find an expression for the speed of light in terms of A,
dc, Ar, dr, N, Tp. Neglect edge effects, end effects, and all efects of material be-
tween the plates and inside the coil.

b) When the capacitor C of part (a) is in series with a resistor R; (Figure ). the de-
) paci g : )

Figure i
cay of an initial charge is given by
4
Q) = QO exp(~7-) -

When the inductor L of part (a) is in series with a resistor R, (Figure iii) the de-

Figure i
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cay of an initial current is given by
1
I(t) = I(0)exp - "f;) .

Express Rz/R; in terms of To, T1, T




Electricity and Magnetism Problem 2

(a) Write down a solution of Maxwell’s equations representing a plane wave traveling
in the +z direction [i.e., with space-time dependence expi(kz — wt)] with the elec-
tric field in the z direction and the magnetic field in the y direction, in a dielectric
with D = ¢E. What changes are needed for a wave traveling in the —z direction?

———
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(b) A wave as in (a) is incident normally from a medium with D = £, E into a layer
with D = £ E and is then transmitted into vacuum (with D = £E). Show that
it is posszble to have no wave reflected into medium 1 by choosing a particular ¢,
and then makmg the thickness of the layer 2 exactly one»qua.rter Wavelength (at
the given frequency w).




Statistical Mechanics Problem 1
Fermi and Bose Ideal Gases

Consider an ideal gas of identical Bose particles, confined to a cubical box of side L.
Suppose that the energy E of a single particle is given in terms of its momentum g by
some unspecified function

E=E(|q]) -
Suppose further that each particle has two possible spin states, like the photon..

(2) Write an expression for the free energy F(L,T) = —kTIn Z of this gas, where T' is
the temperature, k is the Boltzmann constant, and

Z' e~ Eiot /3T

all states

Z

i

The sum is over all states involving any number of particles, and FE\,; is the total eneryy
of each such state. There is no chemical potential factor, as the chemical potential is
taken to be zero. All interactions are to be neglected, so

Biot = ZE(]Q;‘D )

where §; is the momentum of the i’th particle in the state. Assume for simplicity that
the box has perodic boundary conditions, so each face on the boundary is identified
with the opposite face. Assume further that the sum over momentum states can be
well-approximated by an integral. Your answer should have the form

F(L,T) = f ¢ f(71) 5 | .

“where f(J¢|) is an explicit function that you must determine. You cannot carry out the
integration over §, since E(|7]) has not been specified, but you should carry out any other
sumns that appear in your expression.

(b) The entropy of the system is given by

_or

S= 37 -

Using the above equation and the definition of F given in part (a), show that the expec-
tation value £ of the total energy of the system can be written as

E=F+TS.

— PROBLEM CONTINUES ON NEXT PAGE —
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Statistical Mechanics Problem 1, Continued

(c) Now consider the case in which the particles are photons, so that E(l7 [) = ¢|g’|. The
integral in the expression for F(L,T) can then be evaluated, gnnng

=t (kT)é

LT =-3 (Re)®

Suppose that the photon gas, initially at temperature T, is compressed. The length of
each side is decreased from L to al, where 0 < a < 1. If the compression is very slow,
and the walls of the container are perfectly insulating, what is the final temperature T;?

(d) Now suppose that the container is filled with a gas of electrons and positrons, again
with negligible interactions and no chemical potential. Denoting the energy of a single
particle by E.{|q|), where ¢'is its momentum, redo part (a) for this case. That is, write
an expression for the free energy F.(L,T) of the electron-positron gas in the form

FALT) = [ #4£.0D-

{e) If kT > m.c?, where m.c? is the rest energy of an electron, then the rest eangy will
be negligible and the electron-positron gas will behave as if the particles were massless.
In that case the integration can be carried out, with the result

Tx? (kT)*

Fc(L) T) = —-TS-O- (ﬁc)s

Now suppose initially the box is heated to a temperature kT < m.c?, so that only photc. .
contribute significantly to the contents. As in part (c), the box is slowly compressed so
that the sides have length a L, with no heat lost to the walls. This time, however, assume
that the final temperatire satisfies kT’ > m.c?, so that electron-positron pairs contribute
copiously (along with photons) to the final mix. Find the final temperature Ty for this
case. :




Statistical Mechanics Problem 2
Diffusion on a Lattice

~ A particle moves on a one-dimensional lattice, with lattice sites labeled Ey an integer k.
After each successive time interval At, the particle jumps one unit to the left or right

(i.e., Ak = £1), with each direction having equal probability.
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Let g(k,1) denote the probability that at time # the particle is found at lattice sile
E. Let Az denote the physical distance between the lattice sites, so the site k is located
at ' '
z=kAz.

‘Suppose that the probability g(k, t) for the particle o be at the site k varies slowly from
one site to the next, so the probability can be approximated by a continuous probability
density (probability per unit length) P(z,t), where

Q(k:t) = P(z,_t) Azl —kaz -

Assume that P(z,t) is a smooth function for all z, with a Taylor expansion about any
point zo which converges rapidly for |z — zo| S Az. .

(a) By considering what happens during a single time step At, show that the evolution
can be described by a diffusion equation of the form '

dP(z,t) _ D 62P(=,1)
ot Az? P

where D is called the diffusion coefficient. Calculate I in terms of Az and At.

(b) Now suppose that at each time step At the particle can jump any number of steps
Ak, restricted by |Ak] < 5. The probability for any particular value of Ak is given by a

function p(Ak), with
- 5

Z p{Ak)=1.

Ak==5

Assuming that P(z,t) varies slowly over 5 lattice sites, show that it obeys a generalized
- diffusion equation |
0P(z,t} 8P(z,t) . 8°P(z,t).
= - D
ot > + dzz '’
where a is a constant. Express the constants o and D in terms of Az, At, and the
function p(Ak). -

_. PROBLEM CONTINUES ON NEXT FAGE —
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Statistical Mechanics Problem 3, Continued _,

(c) Now suppose that the one-dimensional lattice with sites labeled by the integer k is

replaced by a three-dimensional lattice, with the sites labeled by the triplet of integers

(kz,ky, k) = E. At each time step At the particle has an equal probability of making
any of the six jumps Ak, =1, Ak, = -1, Aky =1, Aky = -1, Ak, =1, or Ak, = —1.
The lattice spacing in all three directions is Az, so the spatial coordinates are given by

z =k, Az
v=k, Az
z=k, Az,

and the probability density (probability per unit volume) is related by

g(k,t) = P(Z,0)A2%, ;. .

Write the appropriate diffusion equation for the evolution of P(Z,t) in this case, and

evaluate the diffusion coefficient in terms of Az and At.




Quantum Mechanics Problem 1
Particle Motion in One Dimension

Consider a particle of mass m which moves in one dimension under the influence of a
potential V(z). V(z) vanishes for z < —a and for z > a, where a is a constant, but V(z)
might have any form in the region ~a <z <a. ‘

V(z) ]

~

-a \_""a z

The Schrodinger wave function for the particle will be denoted by ¥(z,t).

(a) Use the time-dependent Schrédinger equation to derive an equation for the conserva-

tion of probability of the form
o _ 0

ot oz’
where p(z,t) = l\P(z,t)I?. Give an explicit expression for the probability current i(=z,t)
in terms of ¥(z,t), m, and k. Do not set h equal to one. _
(b) Now comnsider a scatiering situation, for which ¥(z,1) = 151(:)5"‘”‘, and ¥ (z) has
the property that ' : ;

Pi(z) = ¢'*% 4 Re™ ™ forz < —a

Pi(z) = Te'*= forz>a.

‘Here k is a constant, and the constants R and T are called the reflection and transmission
amplitudes, respectively. Use the conservation of probability to show that

IR +|1TP=1.

(c) Now copsider a wave function that describes scattering from the right, instead of from
the left. Thus ¥(z,t) = $a(z)e"", where '

da(z) = e *F + R forz>a

da(z) = T'e™** forz < —a.
Show that '
=T
and , e
R = - T

(Hint: try to comstruct ¥z(z} 2s 2 Jinear combination of ¥1(z) and ¥3{z).)

(d) Now suppose that V(z) is symmetric, so V(~z) = V(z). For this special case, show
that the product R*T is a purely imaginary number. '

O




Quantum Mechanics Problem 2
Quantum “Teleportation” of Spin—-% Particles

In this problem we will be considering the spin states of srpin-% par-ticles.‘ The spin- -
up (s, = +3h) and spin-down (s, = ———i-h) states will be denoted by |+) and |-)
respectively. -

(a) Consider first a system with two spin—;} particles, labeled particle 1 and particle 2.
The system can be described in terms of the basis states | ++ )12, | —— }12, |+~ )12, and
| =+)12, where the subscripts indicate which particles are being described by the “+7
and “—7” symbols inside the ket. Consider the operator Q described by the matrix

L++ )12 ]-—_-)12 +—)12 | =+)2
12(+ +1 0 2 1] 0
Q= 12{— — 1| 2 o 0 0
12(+-—| 0 0 0 1
12{— +| 0 0 1 0

Find the eigenvalues and eigenvectors of this operator.

(b) Suppose that Alice prepares two spin- particles in a spin-0 state. The two particles
are labeled 2 and 3, as the label 1 is being saved for later use. Thus the two-particle state
vector can be written 1

| )23 = E ([+—)23 - |—+)23) .

Without disturbing the spins of either particle, particle 3 is given to Bob, who carnes it
“to some other location. Particles 2 and 3 are called an “entangled pair.,”

Alice is then given a third spin-% particle, particle 1, in ap arbitrary quantum state
denoted by '
|@h =al+) +bl—)1,
where |a|? + |8]? = 1. Her goal is to “teleport” this quantum state to Bob, making use of
the entangled pair. Note that she has not been told the coefficients @ and b, and that she
cannot determine them by any experiment performed on the single spin-3 particle that
she was given.

Since particle 1 is uncorrelated with particles 2 or 3, the full quantum state of the
three particles can be written as a product state:

Q125 = |@)1]T)zs

= 25 (1 =) + 75 (1= ==t s)

With the particles in the state [Q2)123 given a.Bove, suppose Aﬁcg measures the spin
of particle 1. What is the probability p; that it is up (+)? Suppose instead she measures
the spin of particle 2. What is the probability p; that it is up?

-~ PROBLEM CONTINUES ON NEXT PAGE —
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Quantum Mechanics Pmblemr 2, Contmued

(c) Suppose now that Alice has not made either of the two measurements discussed in part
(b}, so the three particles are still in the state described above as [{2);123. Using particles: = -

1 and 2, Alice measures the operator Q@ defined in part {a). What is the probability p—,
that she obtains the result @ = —17 (Hint: try to rewrite |)123 in 2 basis in which
particles 1 and 2 are described as eigenstates of Q, while particle 3 is described as an
eigenstate of 8;.) o

(d) Suppose that Alice does obtain the result @ = —1, and she communicates this result
to Bob. What is the state |(')123 of the three-particle system after the measurement?
Show that Bob finds particle 3 in a spin eigenstate, which up to an irrelevant phase is
identical to the state |®) that Alice was trying to transmit. {Note for the curious: if
Alice had obtained a different result, particle 3 would not have been in the state [@). In
all cases, however, particle 3 would be in 2 spin eigenstate which is a rotation of |®). By
learning the result of Alice’s experiment, Bob would know what rotation to perform on

particle 3 so that it could be restored to the siate |®).)

[This problem is baséd on C.H. Bennett .et.al., “Teleporting an unknowsn quantui_n state

‘via dual cle?ss_ica.l‘ and FEinstein-Podolsky-Rosen ._ch_aﬁn'gls‘,” Phy.s‘. Rev. Lett. 70, 1895

(1993)
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