Part II Solutions 9/99

of 17

Mechanics Solutions

$$A = 2Lmv = 2L\sqrt{2mE}$$

Pelative to morny wall, spect changes from V-U to U-V sor in fixed frame, changes from V to -V+2U.

After collision with fixed wall, this becomes V-2U.

Sor in one cycle V -> V-2U.

In one cycle, time 2L+0(U), L-> L+7LU+0(U)

Sor LV -> (L+2LU)V-L(2U) = LV+0(U)

Sor ofter time of order L, LV orly changes by

order Lu al a lent 400, LV stays constart, and so A stays content.

Problem 2

Spur fearth is I = Zir por day

Any vel + occos 12'3 is $(\Omega\omega\phi, -\Omega sm\phi, \dot{\phi}) = \vec{\omega}$ Any vel of duk is

(S, -SZsmp, p) Any mountain of duk is (Is, -\frac{1}{2}IDsup, \frac{1}{2}Ip)= \rangle Torque = dh + wxh and conjects in 1', 3 durchurs one zero.

IS = 0, S a combat 上Ip - - III supcop + Is I sup = ○ sor of an be constant of surp = 0 (only solution of 5>> 52)

of 17

Neglectry $\frac{\Omega}{S}$, $\phi = -2s\Omega sup$

sof s>0, smll osullations about \$=0

, a north, have pand $\frac{2\pi}{\sqrt{2}s\Omega}$

(4 SCO, oscillate about south)

If the is 10 sec, and $\Omega = \frac{2\pi}{24 \times 3600}$ sec

then $(2\pi)^2 \frac{24 \times 3600}{25 \cdot 2\pi} = 100$, $\frac{5}{2\pi} = 432$

so spin of luk ~ 430 rev per sec

Ead M solutions

Problem! a)
$$E = \frac{1}{4\pi}$$

$$\frac{1}{L_{0}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} = 0 \quad \text{so} \quad T_{2} = \frac{1}{R_{2}}$$

$$\frac{R_{1}}{R_{1}} = \frac{1}{R_{2}} = \frac{1}{1 + R_{2}}$$

$$\frac{R_{2}}{R_{1}} = \frac{1}{2\pi} = \frac{1}{1 + R_{2}}$$

Problem L

Releast equations are
$$\frac{\partial E_{xx}}{\partial z} + \frac{1}{2} \frac{\partial E_{yx}}{\partial t} = 0$$
, $\frac{\partial E_{yx}}{\partial z} = \frac{1}{2} \frac{\partial D_{xx}}{\partial z}$

So with $E = (E_{x} e^{-(kz-\omega t)}, 0)$
 $B = (0, B_{y} e^{-(kz-\omega t)}, 0)$

$$kE = \underline{\omega}B$$
, $kB = \underline{\varepsilon}\underline{\omega}E$, $k^2 = \underline{\varepsilon}\underline{\omega}^2$
so $B = \sqrt{\underline{\varepsilon}}E$

$$E_{B} = E_{A} = E_{A$$

Statistical Mechanics Problem 1 Solution

(a) Each single particle state of momentum \vec{q} can be described by a "wave function"

$$\langle 0 | \phi(\vec{x},0) | \vec{q} \rangle \propto e^{i \vec{q} \cdot \vec{x} / \hbar}$$
,

where $\langle 0|$ is the vacuum, so the periodicity condition implies that each component of \vec{q} obeys

 $q_j = \frac{2\pi\hbar}{L}k_j ,$

where k_j is an integer. If there were only one spin state, the general multiparticle state would be described by an integer occupation number $n_{\vec{q}}$ for each allowed momentum \vec{q} , so the sum over all states would be written as

$$Z_1 = \prod_{k_x=0}^{\infty} \prod_{k_y=0}^{\infty} \prod_{k_z=0}^{\infty} \sum_{n_{\vec{q}}=0}^{\infty} \exp \left\{-n_{\vec{q}} E(|\vec{q}|)/kT\right\}$$

$$= \prod_{k_x=0}^{\infty} \prod_{k_y=0}^{\infty} \prod_{k_z=0}^{\infty} \frac{1}{1 - e^{-E(|\vec{q}|)/kT}}.$$

Then

$$\ln Z_1 = -\sum_{k_x=0}^{\infty} \sum_{k_y=0}^{\infty} \sum_{k_z=0}^{\infty} \ln \left(1 - e^{-E(|\vec{q}|)/kT}\right) \; .$$

Approximating the sum as an integral,

$$\ln Z_1 = -\int d^3k \ln \left(1 - e^{-E(|\vec q\,|)/kT}
ight) \;.$$

Changing the variable of integration to the momentum $\vec{q}=2\pi\hbar\vec{k}/L$,

$$\ln Z_1 = - rac{L^3}{(2\pi\hbar)^3} \int d^3q \ln \left(1 - e^{-E(|\vec{q}|)/kT}
ight) \; .$$

For two spin states $Z = Z_1^2$, since

$$Z = \sum_{\substack{\text{all states}\\ \text{spin up}\\ \text{particles}}} e^{-E_{\text{tot}}/kT} = \sum_{\substack{\text{all states of}\\ \text{spin up}\\ \text{particles}}} \sum_{\substack{\text{prin down}\\ \text{spin down}\\ \text{particles}}} e^{-\left(E_{\text{tot}}^{\text{(spin up)}} + E_{\text{tot}}^{\text{(spin down)}}\right)/kT} = Z_1^2 \ .$$

Finally,

$$F(L,T) = -2kT \ln Z_1 = 2kT rac{L^3}{(2\pi\hbar)^3} \int d^3q \ln \left(1 - e^{-E(|ec q|)/kT}
ight) \; .$$

Statistical Mechanics Problem 1 Solution, Continued

(b) Since each term in Z is proportional to the probability of the corresponding state,

$$\mathcal{E} = rac{1}{Z} \sum_{ ext{all states}} E_{ ext{tot}} e^{-E_{ ext{tot}}/kT} \; .$$

But

$$F + TS = -kT \ln Z + T \frac{\partial}{\partial T} (kT \ln Z)$$

$$= kT^2 \frac{\partial}{\partial T} \ln Z$$

$$= kT^2 \frac{1}{Z} \frac{\partial}{\partial T} \sum_{\text{all states}} e^{-E_{\text{tot}}/kT}$$

$$= kT^2 \frac{1}{Z} \sum_{\text{all states}} \frac{E_{\text{tot}}}{kT^2} e^{-E_{\text{tot}}/kT}$$

$$= \frac{1}{Z} \sum_{\text{all states}} E_{\text{tot}} e^{-E_{\text{tot}}/kT}$$

$$= \mathcal{E}.$$

(c) Such a change is adiabatic, which means that entropy is conserved. The entropy is given by

$$S = -rac{\partial F}{\partial T} = rac{4\pi^2}{45} rac{k^4 T^3}{(\hbar c)^3} L^3 \ .$$

Thus T^3L^3 is conserved, so TL is conserved, and therefore

$$T_f = rac{T}{lpha} \ .$$

(d) The derivation starts the same way, except that the occupation numbers are summed only over 0 and 1, instead of from 0 to infinity, and also there are 4 spin states instead of 2. Thus,

$$Z_{1e} = \prod_{k_x=0}^{\infty} \prod_{k_y=0}^{\infty} \prod_{k_z=0}^{\infty} \sum_{n_{\vec{q}}=0}^{1} \exp \left\{-n_{\vec{q}} E_e(|\vec{q}|)/kT\right\}$$

$$= \prod_{k_x=0}^{\infty} \prod_{k_y=0}^{\infty} \prod_{k_z=0}^{\infty} \left(1 + e^{-E_e(|\vec{q}|)/kT}\right).$$

Statistical Mechanics Problem 1 Solution, Continued

Continuing as before,

$$\ln Z_{1e} = rac{L^3}{(2\pi\hbar)^3} \int d^3q \ln \left(1 + e^{-E_e(|\vec{q}|)/kT}
ight) \; ,$$

and

$$F_e(L,T) = -4kT \ln Z_{1e} = -4kT rac{L^3}{(2\pi\hbar)^3} \int d^3q \ln \left(1 + e^{-E_e(|ec q|)/kT}
ight) \; .$$

(e) Again the entropy must have the same value before and after. For the photons

$$S_{\gamma} = \frac{4\pi^2}{45} \frac{k^4 T^3}{(\hbar c)^3} L^3 \; ,$$

while for the electron-positron gas there is a contribution to the final state given by

$$S_e = -\frac{\partial F_e}{\partial T} = \frac{7\pi^2}{45} \frac{k^4 T_f^3}{(\hbar c)^3} L_f^3 .$$

So

$$\frac{4\pi^2}{45}\frac{k^4T^3}{(\hbar c)^3}\,L^3 = \frac{4\pi^2}{45}\frac{k^4T_f^3}{(\hbar c)^3}\,\alpha^3L^3 + \frac{7\pi^2}{45}\frac{k^4T_f^3}{(\hbar c)^3}\,\alpha^3L^3 \ ,$$

which gives

$$4T^3 = 4T_f^3\alpha^3 + 7T_f^3\alpha^3 \ ,$$

or

$$T_f = \left(rac{4}{11}
ight)^{1/3} rac{T}{lpha} \; .$$

Statistical Mechanics Problem 2 Solution

(a) First consider the evolution of the site probabilities q(k,t):

$$q(k, t + \Delta t) = \frac{1}{2}q(k-1, t) + \frac{1}{2}q(k+1, t)$$
,

which can be rewritten as

$$P(x,t+\Delta t) = \frac{1}{2}P(x-\Delta x,t) + \frac{1}{2}P(x+\Delta x,t).$$

Then, to re-express this equation as a time derivative, write

$$P(x,t+\Delta t) = P(x,t) + \frac{1}{2} \left[P(x+\Delta x,t) - 2P(x,t) + P(x-\Delta x,t) \right].$$

Assuming that P(x,t) is a smooth function,

$$rac{\partial P}{\partial x}\left(x+rac{1}{2}\Delta x,t
ight)\simeqrac{P(x+\Delta x,t)-P(x,t)}{\Delta x}$$

and

$$rac{\partial P}{\partial x}\left(x-rac{1}{2}\Delta x,t
ight)\simeqrac{P(x,t)-P(x-\Delta x,t)}{\Delta x}\;.$$

So

$$egin{aligned} P(x+\Delta x,t) - 2P(x,t) + P(x-\Delta x,t) &\simeq \left\{rac{\partial P}{\partial x}\left(x+rac{1}{2}\Delta x,t
ight) - rac{\partial P}{\partial x}\left(x-rac{1}{2}\Delta x,t
ight)
ight\} \ egin{aligned} \Delta x \ &\simeq rac{\partial^2 P(x,t)}{\partial x^2} \, \Delta x^2 \ . \end{aligned}$$

Then

$$egin{split} rac{\partial P}{\partial t} &\simeq rac{P(x,t+\Delta t) - P(x,t)}{\Delta t} \ &\simeq rac{1}{2\Delta t} rac{\partial^2 P(x,t)}{\partial x^2} \, \Delta x^2 \; . \end{split}$$

Thus,

$$\frac{\partial P(x,t)}{\partial t} = D \frac{\partial^2 P(x,t)}{\partial x^2} ,$$

where

$$D = \frac{\Delta x^2}{2 \, \Delta t} \; .$$

Statistical Mechanics Problem 2 Solution, Continued

(b) Generalizing from the calculation above,

$$q(k, t + \Delta t) = \sum_{\Delta k = -5}^{5} p(\Delta k) q(k - \Delta k, t)$$
,

which can be rewritten as

$$P(x,t+\Delta t) = \sum_{\Delta k=-5}^{5} p(\Delta k)P(x-\Delta k \Delta x,t),$$

Expanding $P(x - \Delta k \Delta x, t)$ in a Taylor series,

$$P(x-\Delta k\,\Delta x,t)=P(x,t)-\Delta k\,\Delta x\,rac{\partial P}{\partial x}(x,t)+rac{1}{2}\,\Delta k^2\,\Delta x^2\,rac{\partial^2 P}{\partial x^2}(x,t)+\dots\;,$$

SC

$$egin{split} P(x,t+\Delta t) &= P(x,t) - \sum_{\Delta k = -5}^5 p(\Delta k) \Delta k \, \Delta x \, rac{\partial P}{\partial x}(x,t) + \ &+ rac{1}{2} \, \sum_{\Delta k = -5}^5 p(\Delta k) \Delta k^2 \, \Delta x^2 \, rac{\partial^2 P}{\partial x^2}(x,t) + \ldots \, . \end{split}$$

Thus,

$$egin{aligned} rac{\partial P(x,t)}{\partial t} &\simeq rac{P(x,t+\Delta t) - P(x,t)}{\Delta t} \ &\simeq lpha rac{\partial P(x,t)}{\partial x} + Drac{\partial^2 P(x,t)}{\partial x^2} \ , \end{aligned}$$

where

$$lpha = -rac{\Delta x}{\Delta t} \sum_{\Delta k = -5}^{5} p(\Delta k) \Delta k$$

$$D = rac{\Delta x^2}{2 \Delta t} \sum_{\Delta k = -5}^{5} p(\Delta k) \Delta k^2 .$$

(c) Defining 6 unit vectors

$$\hat{n}^{(1)} \equiv (1,0,0) \quad \hat{n}^{(2)} \equiv (-1,0,0) \\ \hat{n}^{(3)} \equiv (0,1,0) \quad \hat{n}^{(4)} \equiv (0,-1,0) \\ \hat{n}^{(5)} \equiv (0,0,1) \quad \hat{n}^{(6)} \equiv (0,0,-1)$$

Statistical Mechanics Problem 2 Solution, Continued

the evolution of $q(\vec{k},t)$ can be written as

$$q(\vec{k}, t + \Delta t) = \frac{1}{6} \sum_{i=1}^{6} q(\vec{k} + \hat{n}^{(i)}, t)$$
,

which can be rewritten as

$$P(\vec{x}, t + \Delta t) = \frac{1}{6} \sum_{i=1}^{6} P(\vec{x} + \hat{n}^{(i)} \Delta x, t) .$$

Looking first at only the sum of i = 1 and i = 2, the contribution to the right-hand side can be written as

$$egin{aligned} rac{1}{6} \Big[P(oldsymbol{x} + \Delta oldsymbol{x}, y, z, t) + P(oldsymbol{x} - \Delta oldsymbol{x}, y, z, t) \Big] \ &= rac{1}{3} P(oldsymbol{x}, y, z, t) + rac{1}{6} \Big[P(oldsymbol{x} + \Delta oldsymbol{x}, y, z, t) - 2 P(oldsymbol{x}, y, z, t) + P(oldsymbol{x} - \Delta oldsymbol{x}, y, z, t) \Big] \ &\simeq rac{1}{3} P(oldsymbol{x}, y, z, t) + rac{1}{6} rac{\partial^2 P(oldsymbol{x}, y, z, t)}{\partial oldsymbol{x}^2} \Delta oldsymbol{x}^2 \ . \end{aligned}$$

Adding similar contributions for i = 3, 4 and i = 5, 6, one finds

$$P(\vec{x},t+\Delta t) = P(\vec{x},t) + \frac{1}{6}\nabla^2 P(\vec{x},t) \Delta x^2$$
,

where

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

is the Laplacian operator. So

$$\frac{\partial P(\vec{x},t)}{\partial t} = D\nabla^2 P(\vec{x},t) ,$$

where

$$D = \frac{1}{6} \frac{\Delta x^2}{\Delta t} \ .$$

(a) The time-dependent Schrödinger equation is

$$i\hbarrac{\partial\Psi}{\partial t}=-rac{\hbar^2}{2m}rac{\partial^2\Psi}{\partial x^2}+V\Psi \;.$$

Thus

$$\begin{split} i\hbar\frac{\partial}{\partial t}|\Psi|^2 &= \Psi^* \left[-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi}{\partial x^2} + V\Psi \right] - \left[-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi^*}{\partial x^2} + V\Psi^* \right]\Psi \\ &= -\frac{\hbar^2}{2m} \left[\Psi^* \frac{\partial^2 \Psi}{\partial x^2} - \Psi \frac{\partial^2 \Psi^*}{\partial x^2} \right] \\ &= -\frac{\hbar^2}{2m}\frac{\partial}{\partial x} \left[\Psi^* \frac{\partial \Psi}{\partial x} - \Psi \frac{\partial \Psi^*}{\partial x} \right] \;. \end{split}$$

So

$$\begin{split} \frac{\partial}{\partial t} |\Psi|^2 &= \frac{i\hbar}{2m} \frac{\partial}{\partial x} \left[\Psi^* \frac{\partial \Psi}{\partial x} - \Psi \frac{\partial \Psi^*}{\partial x} \right] \\ &= -\frac{\partial j}{\partial x} \;, \end{split}$$

where

$$j = -rac{i\hbar}{2m}\left[\Psi^*rac{\partial\Psi}{\partial x} - \Psirac{\partial\Psi^*}{\partial x}
ight] \; .$$

(b) Since ρ is independent of time,

$$\frac{\partial j}{\partial x} = 0.$$

Thus j must have the same value for both x < -a and x > a. For x < -a,

$$\begin{split} j &= -\frac{i\hbar}{2m} \left\{ \left[e^{-ikx} + R^* e^{ikx} \right] \left[ike^{ikx} - ikRe^{-ikx} \right] \right. \\ &\left. - \left[e^{ikx} + Re^{-ikx} \right] \left[-ike^{-ikx} + ikR^* e^{ikx} \right] \right\} \end{split}$$

Quantum Mechanics Problem 1 Solution, Continued

By equating the two expressions for j one finds

$$1 - |R|^2 = |T|^2 ,$$

from which the result follows immediately.

(c) Write

$$\psi_2(x) = \alpha \psi_1(x) + \beta \psi_1^*(x) ,$$

where α and β are coefficients to be determined. For x < -a, one has

$$\psi_2(x) = \alpha \left[e^{ikx} + Re^{-ikx} \right] + \beta \left[e^{-ikx} + R^*e^{ikx} \right]$$
$$= (\alpha + \beta R^*)e^{ikx} + (\beta + \alpha R)e^{-ikx}.$$

Matching the coefficients of e^{ikx} and e^{-ikx} with the desired behavior for ψ_2 , one has

$$\alpha + \beta R^* = 0$$

$$\beta + \alpha R = T'$$
.

For x > a,

$$\psi_2(x) = \alpha T e^{ikx} + \beta T^* e^{-ikx} .$$

Again matching coefficients,

$$\beta T^* = 1$$

$$\alpha T = R'$$
.

Thus,

$$\beta = 1/T^*$$

and

$$\alpha = -\beta R^* = -\frac{R^*}{T^*} \ .$$

Then

$$T' = \beta + \alpha R = \frac{1 - |R|^2}{T^*} = \frac{|T|^2}{T^*} = \boxed{T}$$

and

$$R' = \alpha T = \boxed{-\frac{R^*T}{T^*}}.$$

(d) If V(x) is symmetric, then there is no difference between scattering from the left and scattering from the right. Then $\psi_2(x) = \psi_1(-x)$, so R' = R. Thus

$$R=-\frac{R^*T}{T^*}\ ,$$

which implies that

$$(R^*T) = -(R^*T)^* .$$

Since R^*T is equal to the negative of its complex conjugate, it must be purely imaginary.

Quantum Mechanics Problem 2 Solution

(a) The matrix is already block diagonal. The lower right 2×2 block is the Pauli matrix σ_x , while the upper left 2×2 block is $2\sigma_x$. Since σ_x has eigenvalues +1 and -1, with eigenvectors

 $\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$ and $\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$, respectively,

the diagonalization of Q follows immediately. The eigenvalues q_i and the corresponding eigenvectors v_{q_i} are given by

$$q_1=2$$
 , $v_2=rac{1}{\sqrt{2}}egin{pmatrix} 1 \ 1 \ 0 \ 0 \end{pmatrix} =rac{1}{\sqrt{2}}ig(|++
angle_{12}+|--
angle_{12}ig)$

$$q_2 = -2 \; , \quad v_{-2} = rac{1}{\sqrt{2}} \left(egin{matrix} 1 \ -1 \ 0 \ 0 \end{array}
ight) = rac{1}{\sqrt{2}} \left(|++
angle_{12} - |--
angle_{12}
ight)$$

$$q_3 = 1$$
 , $v_1 = rac{1}{\sqrt{2}} egin{pmatrix} 0 \ 0 \ 1 \ 1 \end{pmatrix} = rac{1}{\sqrt{2}} \left(|+-\rangle_{12} + |-+\rangle_{12}
ight)$

$$q_4 = -1 \; , \quad v_{-1} = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \ 0 \ 1 \ -1 \end{array}
ight) = rac{1}{\sqrt{2}} \left(|+-
angle_{12} - |-+
angle_{12}
ight) \; .$$

(b) The four basis vectors appearing in the expression for $|\Omega\rangle_{123}$ occur with probabilities $\frac{1}{2}|a|^2$, $\frac{1}{2}|a|^2$, $\frac{1}{2}|b|^2$, and $\frac{1}{2}|b|^2$, respectively. Since particle 1 is spin-up for the first two of these basis vectors,

$$p_1 = \frac{1}{2}|a|^2 + \frac{1}{2}|a|^2 = \boxed{|a|^2.}$$

Alternatively, one could recognize that $|\Omega\rangle_{123}$ is a product state vector $|\Phi\rangle_1|\Psi\rangle_{23}$, so the result has to be the same as would be found for $|\Phi\rangle_1$. Particle 2 is spin-up for the first and third basis vectors in the expansion of $|\Omega\rangle_{123}$, so

$$p_2 = \frac{1}{2}|a|^2 + \frac{1}{2}|b|^2 = \frac{1}{2}.$$

This is the same answer that one would find from $|\Psi\rangle_{23}$.

Quantum Mechanics Problem 2 Solution, Continued

(c) The measurement of Q can be most easily understood by rewriting $|\Omega\rangle_{123}$ in a basis in which Q is diagonal. From the answer to (a), one can write

$$\begin{split} |++\rangle_{12} &= \frac{1}{\sqrt{2}} \left(\, |Q=2\rangle_{12} + |Q=-2\rangle_{12} \right) \\ |--\rangle_{12} &= \frac{1}{\sqrt{2}} \left(\, |Q=2\rangle_{12} - |Q=-2\rangle_{12} \right) \\ |+-\rangle_{12} &= \frac{1}{\sqrt{2}} \left(\, |Q=1\rangle_{12} + |Q=-1\rangle_{12} \right) \\ |-+\rangle_{12} &= \frac{1}{\sqrt{2}} \left(\, |Q=1\rangle_{12} - |Q=-1\rangle_{12} \right) \, . \end{split}$$

Then

$$\begin{split} |\Omega\rangle_{123} &= \frac{1}{2} a \Big(|Q=2,-\rangle_{123} + |Q=-2,-\rangle_{123} \Big) \\ &- \frac{1}{2} a \Big(|Q=1,+\rangle_{123} + |Q=-1,+\rangle_{123} \Big) \\ &+ \frac{1}{2} b \Big(|Q=1,-\rangle_{123} - |Q=-1,-\rangle_{123} \Big) \\ &- \frac{1}{2} b \Big(|Q=2,+\rangle_{123} - |Q=-2,+\rangle_{123} \Big) \\ &= \frac{1}{2} |Q=2\rangle_{12} \Big(-b|+\rangle_3 + a|-\rangle_3 \Big) \\ &+ \frac{1}{2} |Q=-2\rangle_{12} \Big(b|+\rangle_3 + a|-\rangle_3 \Big) \\ &+ \frac{1}{2} |Q=1\rangle_{12} \Big(-a|+\rangle_3 + b|-\rangle_3 \Big) \\ &+ \frac{1}{2} |Q=-1\rangle_{12} \Big(-a|+\rangle_3 - b|-\rangle_3 \Big) \;. \end{split}$$

Thus, the probability p_{-1} that Alice measures Q = -1 is given by

$$p_{-1} = rac{1}{4} \Big(\, |a|^2 + |b|^2 \Big) = \boxed{ egin{array}{c} rac{1}{4} \ . \end{array} }$$

(Actually, the probability of measuring any particular value of Q is 1/4.)

(d) The measurement projects the state vector into the subspace for which Q=-1, and

F 17

Quantum Mechanics Problem 2 Solution, Continued

then the state vector must be rescaled to unit norm. Thus,

$$|\Omega'\rangle_{123} = |Q=-1\rangle_{12}\Big(-a|+\rangle_3-b|-\rangle_3\Big)$$

$$= \boxed{-|Q=-1\rangle_{12}|\Phi\rangle_3.}$$

Since this is a product state, measurements of particle 3 alone will be predicted by the state vector $|\Phi\rangle_3$.