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Statistical Mechanics Problem 1
Solution

(2) Each single particle state of momentum § can be described by a “wave function”
(0l4(Z,0)1q) ox eT5/2

where (0] is the vacuum, so the periodicity condition implies that each component of ¢

obeys
2wk

9 = —L-k.i ’

where k; is an integer. If there were only one spin state, the general multiparticle state
would be described by an integer occupation number ny for each allowed momentum g,
so the sum over all states would be written as

Zi=[] [T II X exp{-neB(I21)/*T}
kz=0 ky=0k,=0 ng=0

oo oo SO

1
= H H H 1—_ e~ E(IN/ET *

kz=0 ky=0k,=0

Then

[ o] (o]

InZ; = - Z i Z In (1 - e—E(iEfl)/kT) .

k=0 ky=0 k, =0

Approximating the sum as an integral,
Inz = —/d"‘kln (1 - e—E('f“/"T) .
Changing the variable of integration to the momentum ¢ = 2rhk /L,

L [ Boln (1 — e~ BUTD/AT

For two spin states Z = ZZ, since

i i dO
2= Y eBafTo ¥ T (e VAT _ g2

all states all states of all states of
spin up  spin down
particles  particles

Finally,

L s o E(7N/AT
F(L,T) = —2kTln Z; = 2kTW/d gln (1-—e ) )




Statistical Mechanics Problem 1 Solution, Conlinued

(b) Since each term in Z is proportional to the probability of the corresponding state,

1 _
£=3 2 B P/,
all states

But 8
F+TS=-kThZ +T5T-(kT1nz)

= kTZa—?P—an

18
— kT2 — z e—Egog /kT
zor all states

= sz-l- Z f;zt e~ Fror/ET

all states

1 —
all states

=£.

(c) Such a change is adiabatic, which means that entropy is conserved. The entropy is
given by -
oF _ 4n? BATR I

5= "3 = 15 (ho)?

Thus T3 L3 is conserved, so TL is conserved, and therefore

Ty =

RN

(d) The derivation starts the same way, except that the occupation numbers are summed
only over 0 and 1, instead of from 0 to infinity, and also there are 4 spin states instead
of 2. Thus,

oo 1

Z=T I TI S o {-naB(d/AT}

ky=0k;=0 ng=0

o0 o

=11 ﬁ I1 (1+emetaonT)

ke=0 ky=0 k, =0

o,( v




Statistical Mechanics Problem 1 Solution, Continued

Continuing as before,

InZ,, = L d*qln (1 + e—Ee(m)/kT)
(27!’ﬁ)3 ?

and

3

- e gr-L [ —E.(I§) /AT
F.(L,T) = 4TI Z,, = WT s /d ¢l (1+e ) .

(e) Again the entropy must have the same value before and after. For the photons

_w T
T 45 (Re)® T

while for the electron-positron gas there is a contribution to the final state given by

oF, 1x* k4T? s

Se=—%1 = & oy L1
So 2 pap3 2 ki3 2 i3
4" K°T 3 _ A4 fasaz_""_ L B3L3
45 (khe)® 45 (khc)? 45 (he)® !
which gives .
4T3 = 41"}013 + 'i’T_;e’az3 ,
or

T_ i)llaz
=\11 a’
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Statistical Mechanics Problem 2 °£ 1
Solution

(a) First consider the evolution of the site probabilities g(k,t):
q(k,t + At) = ~12-q(k -1,5)+ %q(k +1,4),
which can be rewritten as
P(z,t+ At) = %P(z —Az,t) + %P(z + Az,t) .
Then, to re-express this equation as a time derivative, write

Plz,t + A1) = P(z,1) + 5 [Pz + A2,1) ~ 2P(z,1) + Pla — Aa,1)] .

Assuming that P{z,t) is a smooth function,

P(z + Az,t) — P{z,1)
Az

aorP
6—2 (:E + %A:C,t) o~

and

P(z,t) — P(z — Az,1)
Az )

apP
E:— (13 - %Az,t) o~
So
oP P o
P(z + Az, t) — 2P(z,t) + P(z — Az, i) ~ {3_:1: (z + iA=,t) - B2 (v -—%Aw,i)} Az

2
~ a P(z’t)rAzz .

- 9z2
Then
B_P N P(z,t + At) — P(z,1)
ot At
1 8°P(z,t) , ,
pn.4 m—'—‘——azz A:E .
Thus,
OP(z,t) -D 8%P(z,t)
8 8z
where

Az?
Dmm.
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Statistical Meckanics Problem 2 Solution, Continued

(b) Generalizing from the calculation above,

5

akt+at)= Y p(AR)a(k— Ak,
Ak=-5

which can be rewritten as
5

P(z,t+At)= Y p(Ak)P(z — Ak Az,t),
Ak=-5

Expanding P(z — Ak Agz,t) in a Taylor series,
2
Pz — Ak As,t) = P(z,t) — Ak Az o 2 9°P

SO
-]

P(z,t+ Aty = P(z,t)— Y. p(Ak)AkAz g—f(:,t)-*—

Ak=—5

5

1 82pP
+> Y PAR)AR Az o (2y8) + ... .

Ak=-5
Thus, .
8P(z,t) N P(z,t + At) — P(z,t)
8t - At
OP(z,t) 02P(z,t)
™ +D 6z2
where

5

5

Ak=-5

(c) Defining 6 unit vectors
2 =(1,0,0) A =(-1,0,0)
3 =(0,1,0) a® =(0,-1,0)
7#%).=(0,0,1) 7 =(0,0,-1),

oP 1
(z,1) + 3 AR Az Eg(z,t) +...
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Statistical Mechanics Problem 2 Solution, Continued

the evolution of g(k,t) can be written as
. I )
okt +At) = ¢ Z; gk +a0,1),
which can be rewriften as
1g .
P(Ft+At) = ¢ ; P(Z +7 Az,t) .

Looking first at only the sum of i = 1 and i = 2, the contribution to the right-hand side
can be written as

%[P(z + Az,y,z,t) + P(z — Az,y,z,t)]
1 1
= EP(z,y,z,t) + s [P(:c + Az,y,z,t) — 2P(z,y,2,t) + Pz — Aw,y,z,t)]

1 62P(z,y,z,t) 2
R

Adding similar contributions for ¢ = 3,4 and i = 5,6, one finds

~

P(z,y,2,t) +

ol

P&t + At) = P(&,8) + %Vﬁp(z, £) Ac?

‘where
, 0% 8 a?
Vi=ar ot o
" is the Laplacian operator. So
P(&,1
a—%t”—’——) = DV2P(3,1),
where
1 A?
D= 6 AL




Quantum Mechanics Problem 1
Solution

(a) The time-dependent Schrédinger equation is

., 0¥ K 5%
tﬁﬁ——“%b—m‘;"{*vw.
Thus 2 5 2 mg
L0 o [ R 1] h 8%9* .
zhalq’l =¥ [—%674_1“11] - [—57; 5a? +V‘I’}‘I’
B[ o
T T om 822 Qz?
B2 8 [_,00 ov*
=" omds [‘I’ a—z“‘l’ﬁ]
So ) ho8[ .80 _out
Tigp= 9 |g+9% _g?%
ath’l 2m Oz [‘I‘ Oz ¥ 32}
__9
- 8z’
where

{b) Since p is independent of time,
% _q
dz
Thus j must have the same value for both z < —¢ and = > a. For ¢ < —a,

j = -% {[e—ikz + R*eik:] [,ike:'kz N ikRe—ikz]

_ [eikz +Re—ikz] [_ike-—ikz +ikR*eikz]}

°£ 11
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Quantum Mechanics Problem 1 Solution, Continued

By equating the two expressions for j one finds

1-|RP =T,
from which the result follows immediately.
(c) Write

P2{2) = afa () + Bi(=) ,
where o and J are coefficients to be determined. For z < —a, one has
ba(z) = o [ + Re~*°] 4 B[e%% + R e
= (a + AR +(B+ aR)e e

Matching the coefficients of €*% and e~ %% with the desired behavior for %2, one has

a+fBR =0

B+aR=T.

For z > a, ] ]
1/]2(1:) — aTezkz +ﬂTte—lkz .

Again matching coeflicients,

BT =1
oT=R.
Thus,
g =1/T*
and B
o = —ﬂR* = —T,: .
Then
, _1-|RPE T _
T'=B+aR = T = e T T
and
R*T
‘_ —1 _
R =aT i

(d) If V(=) is symmetric, then there is no difference between scattering from the left
and scattering from the right. Then 1,{z) = ¥1(—2), so R’ = R. Thus

R*'T
T+’

R=—-
which implies that |
(R*T) = —(R"T)" .

Since R*T is equal to the negative of its complex conjugate, it must be purely imaginary.
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Quantum Mechanics Problem 2
Solution

(a) The matrix is already block diagonal. The lower right 2 x 2 block is the Pauli matrix
o, while the upper left 2 x 2 block is 20,. Since o, has eigenvalues +1 and —1, with

eigenvectors
1 1
—\/—f (} ) and —ﬁ ( _11 ) , respectively,

the diagonalization of Q follows immediately. The eigenvalues ¢; and the corresponding
eigenvectors v,, are given by

1
n=2 , v=—7
V2

1
1
0
0
1
1 -1 1
@ =-2, vqf—ﬁ( =7(|++)1z—t——)12)
0
0
1
1

=5 (1+=he=1~+ha) -

(b) The four basis vectors appearing in the expression for [2)123 occur with probabilities
1lal?, 3la}?, ;1b]%, and 3|b[?, respectively. Since particle 1 is spin-up for the first two of
these basis vectors,

pr = glal* + 3laf* =| lal? -

Alternatively, one could recognize that |§2)123 is a product state vector |$)1|¥)2a, so the
result has to be the same as would be found for |{&);. Particle 2 is spin-up for the first
and third basis vectors in the expansion of [Q);23, so

_1 2 1 2 1
Pz—zia; +2|bf =1 3

This is the same answer that one would find from |¥),;.
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Quantum Mechanics Problem 2 Solution, Continued

(c) The measurement of @ can be most easily understood by rewriting |Q)123 in a basis
in which @ is diagonal. From the answer to (a), one can write

| ++h2 = 7—‘ (lQ—2)12 +1Q= -‘2)12)
|=—hz= :7— (lQ—z)lz - |Q——2)12)

T (§Q 1he + Q= —1>1z)
|=+hz= 7— (lQ 1)12 — |@=-1) 12)

Then
) — 1 — =
| )123 '“(iQ 2, _)123 + |Q -2, _)123)

— 50(1@=1,Fhazs + 1@=-1, +)123)
+ %b( 1Q=1,—)12s — IQ=—1,—)12.3)
— 50(19=2, )12~ 1Q=-2,+)123)
- %igzz)n( —bl+)s+al-)s)
+ %|Q=—2)12(b|+)3 +a1—)s)
+ §1Q=1>n( —al+)s +51-)s)
+ %|Q=—1)w( —al+)s =bl-)s) -

Thus, the probability p_; that Alice measures @ = —1 is given by

= (laf? + o) =

Actually, the probability of measuring any particular value of € is 1/4.
8

mw
o Ml

(@) The measurement projects the state vector into the subspace for which @ = —1, and
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Quantum Mechanics Problem 2 Sclution, Continued

then the state vector must be rescaled to unit norm. Thus,

ln')l23

i

j@=-1)12( —al+)s = b|-)s)

=| —l@=—1)12[®)s .

Since this is a product state, measurements of particle 3 alone will be predicted by the
state vector |®)s. '




