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2. Use a separate fold of papér for each problemy and write your name on each fold. Include
the problem number with each solution. ‘

3. Calculators may be used.

4. No Books or Reference Materials May Be Used.




- Mechanics® Problem 1

Consider small vibrations of a molecule made up of two identical atoms .4
having mass m,, denoted A; and Az in the drawing, and a central atom B
having mass mp. Assume the potential energy depends only on the
distances 4;5, B4y, and the angle 24, BA,.

2)

b)

d)

> Yo 3

Determine the number of longitudinal and transverse vibrdtional
modeés for fully three-dimensional motion. Explain why all the
frequencies may be determined by considering vibrations in the z-y
plane. " '

Denote the displacements from equilibrium of each atom z;,y; as
shown in the drawing. Eliminate three variables by working in a

~eoordinate system such that the total momenta F; = F, =0 and the

total angular momentum J, = 0, assuming that the displacements are
small.

Show that the potential energy for small oscillations has the form

8

5 (1 +y3 — 232)%

K %
U=z(ms—22)" +5(21 - z2)" +

Calculate the normal modes and corresponding vibrational

- frequencies. Sketch how the atoms move for each mode.




Mechanics Problem 2

Consider the scattering of a beam of particles by a repulsive central force
F=Er 3 '

' . . . g
a) Define the differential cross section for classical scattering, I

do d :
b} Show that d—g- = sifl) " (Eg) where x is the deflection angle relative

to the forward direction and p is the impact parameter as shown in

the drawing.

¢) Using polar coordinates {¢,) for the particle moving in the central
potential U(r) with U(r — oo} = 0, show that

d) Calculate -g—?—z- for the repulsive force' F = kr—3. The integral

'fdr
1

= cos™* (-1-) nia,y be useful.
r




Electromagnetism Problem 1

PART 1. Consider the TEM mode in a coaxial cable, consisting of two. perfectly
conducting cylinders of radii a and b {a < b). Clearly state your choice of units in
answering this problem. *

a.)l For the TEM mode with a wavenumber k in an infinite cable, find the £ and
B fields in the space between the cylinders, and the charge and current
densities on the surface of each cylinder. Make a drawing.

b) Demonstrate that at low frequenc::es (w < c/ b) the input to a semi-infinite
cable is represented by an effective resistor (also called “the cable mput
" impedance”), so that V., = Reg .. Find the value of Reg.

‘¢) The semi-infinite cable described in part (b) is connected across an L-C
circuit, as shown in the drawing. One has to design the damped LC oscillator
so that it has a quality factor @ > 100. Derive the corresponding condition for

- L and C in terms of the cable geometric parameters a and b.

d) Now consider the LC circuit of question (c) coupled to a finite segment of the
coaxial cable of length D > b, aK. , as shown in the drawing below. The far
end of the cable is open. Derive a characteristic equation for the resonance

frequencies of the system. _

PART 2. In an infinite coaxial cable, the outer radius b slowly varies aldng the
cable, from b = b; to b = by, where b; > by, over a scale distance d. For instance:
' ' ‘ bre==/2d 4 p,e+e/2d
b(z) = e—=/2d | gtzj2d

An E&M wave propagating along the cable from z = —co W111 be partla.lly reﬂected
from the inhomogeneity region, and partlally transmifted. Find the reflection
coefficient R = [Eeq/ Einc[* for the TEM mode of wavelength X > d.




Electromag_netism P:robIEm 2

A magnetic field is given by

i
Va4 Az

(Note that such a field cannot exist in & vacuum. You.may assume that the field is
generated by a current of electrons, but you should neglect the electrons in this

problem.) A nonrelativistic proton moves in this field under the action of the
Lorentz force, -

B,=0, B,=235, B.=0

a) What are the constants of the motion for the proton in this configuration?

'b) What kind of orbit can the prdto_n have for 22 > A2, assuming that its energy
¢ < mpc?, and that v./(eBo/myc) < X7 Here v, = VU2 + v? is the
component of the velocity perpendicular to the magnetic field, and v =1, is

- the parallel ‘component. Both v, and oy # 0. ' -

c) For the same conditions as in part (b), what kind of orbit can a proton have in
the region near z = 0 where 22 < A? and By = B,z/\?

d) Find the order of magnitude of the size of the region near = 0 where the
topology of the orbits, with 0 < o 1{eBoh/myc) < 1, is drastically different
from that which is characteristic of the “far” region z2 3 )2,




Statistical Mechanics Problem 1°
Consider N spins-1/2 at temperature T in an external magnetic field with

Hamiltonian .
= -—;.LB Z 55 .

a) Find the partition function of the system Zo(B, B), where § =1 JkgT.

b) Find the free energy F and the entropy S.

Now, suppose that the spins are interé»ctin_g, so that the total Hamiltonian-
is H = Ho+ Hin. The interaction is the same between all spins and is given

by .
Hiw=—J ) 59
i<j

The coupling consta.nt J is positive, cdrresponding to a ferromagnet.

. ¢) Show that the partition function of the system can be written
7=A j Zo(B + M/pm B/ d Q)

and find the constant A.

d) Consider a large number of spins NV 3> 1. In this “mecroscopic” Limit

. the partition function can be analyzed using the so-called '
“saddle-point approximation,” which amounts to writing the
integrand in Eq. (1) as e=#F®), looking for the minima of the function
F()), and evaluating the expression near the minima as a Gaussian
integral. _ ‘ .
Consider the function F'()\) for B = 0. Show that at high temperature
F(}) has only one minimum at X = 0. Plot F()) for different
temperatures. Find the critical temperature T, below which new
minima appear. Interpret the temperature T, in terms of spin -
ordering. .

e) Find the linear magnetic susceptibility at T" > Te.




‘Statistical Mechanics Problem 2

Consider a one-dimensional quantum mechanical oscillator with mass m
and spring constant k. The system is in thermodynamic equilibrium
characterized by temperature 7.

a) Write the system enérgy levels E,, and calculate the partition
~ function Z.

b) Find the mean energy (E) of the system and specific heat C as a
function of temperature.

-Now; consider a string of length L; having density p per unit length. The
string is stretched with tension Fp, and its ends are fixed to hard walls. The
state of the string is characterized by a transverse displacement field u(z, t)
where z is the coordinate along the string (0 <z < L).

c) Write the classical equation of motion of the string, and look for
solutions with the boundary conditions u{z = 0) = u(z = L) = 0.
Find the normal modes U, (z) of the system (m = 1,2,3...). (Don’t
forget that there are two transverse polarization directions for the
string displacement,)

| d) Show that the potential energy of the string can be written as
s 3Fo(0u/dz)? dz. Write the classical Hamiltonian in terms of the
normal mode amplitudes defined by the generalized Fourier series

ulz) = Zm QmUm(i)-

e) The quantum string problem can be solved by associating a quantum
mechanical oscillator with each normal mode of string oscillation.
Write the Hamiltonian operator in terms of g,,. In the limit of a long
string, L > Ac/kgT, find the mean energy of the system and the
specific heat as functions of temperature.




Quantum Mechanices — Problem 1

Consider a Dirac particle in a uniform magnetic field of magnitude B in the
z direction. The Hamiltonian may be written

H=ca-m -+ ﬁmcz
where

7T=p—gA
' c
B=VxA

(0 O’,') -
o =
o, 0 -
1 0
8=
0 -1

and o; denotes the Pauli matrices.

a) Work in the gauge 4, = 0 and calculate the commutators [7r3, 73]
Note that one of them should involve B. The anticommutation
relations {oy, a;} and {0z, B} may be useful.

b) Calculate H? and show that it can be written as the sum of three
commuting terms | .-

hy = ¢*(n2 +72)

hy= c*(x?)

h3 = Qf,'_(}.'j [71‘,;, Wj]

plus a constant.

c) Find the eigenvalues of the three commmuting operators and thus find
the eigenvalues of H2.

d) Write the eigenvalues of H and calculate the nonrelativistic limit to
order 1/m. '




Quantum Mechanics — Problem 2

Three noninteracting identical particles of mass m are in a
three-dimensional box of dimensions L x L x L/3:

V; 0, 0<z<L0<y<L0<z<L/3
o0, otherwise.

a) Calculate the three lowest single-particle energy eipenvalues and all
the corresponding eigenfunctions. Express all energies in units of
= h*n?/2mL2.

b) Flrst assume the particles have spin 0. For the combined system of
three particles, by considering all states of the appropriate symmetry
find the two lowest eigenvalues of the total energy and their
degeneracies (i.e., the total number of distinct states of the proper.
symmetry that have each energy).

c) Repeat part (b} for spin-1 /2 particles.
d) Repeat part (b) for spin-1 particles.

In your exam book, summarize the results for (b), (c), and (d) in a table
of the following form:

Ground State First Excited State
Spin Energy Degeneracy Energy Degeneracy
o - _
1/2
1







