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1. This examination is divided into four sections, Mechanics, Electricity & Magnetism,
Statistical Mechanics, and Quantum Mechanics, with two problems in each. It is advisable
to carefully read both problems in each section before making your choice. Submit ONLY
one problem per section. IF YOU SUBMIT MORE THAN ONE PROBLEM FROM A
SECTION, BOTH WILL BE GRADED, AND THE PROBLEM WITH THE LOWER
SCORE WILL BE COUNTED. '

2. Use a separate fold of paper for each problem, and write your name on each fold. Include

the problem number with each solution.

3. Calculators may be used.

4. No Books or Reference Materials May Be Used.




Problem 1 (Mechanics)

Cousider a mass m attached to a string which in turn is nailed to point A on a
circular spool of radius B. The whole system lies on the horizontal plane, and the
spool is fixed so it cannot rotate. As the mass slides without friction the string
remains taut and either winds or unwinds around the spool. B is the point where
the string leaves the spool.

- Let the total length of the string be [, and let s denote the free length of the
string, that is, the length from B to the mass. We align the coordinate axes so
that the center O of the spool corresponds to z = y = 0 and the radius to OA is
in the positive y-direction. Let ¢ denote the angle between OA and OB.

3.

A

(a) Express the coordinates (z,y) of the mass in terms of 5,6 and R. Using the
constraint relating s and 6 to the total length, find the Lagrangian L(s, §) of the
system in terms of the dynamical coordinate s and its associated velocity $.

(b) Find the Hamiltonian H(s,p), write Hamilton’s equations, and confirm that
p/s is a constant of the motion. Use this information to find s(t) in terms of its
initial value so and the total energy E.

(c) Consider the following change of coordinates:
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Find the value of the constant ) so that the transformation of variables is canonical.
Give H'(Q, P), and write the resulting Hamilton-Jacobi (HJ) equation for the

action S(@,t).

(d) Assume a solution of the HJ equation of the form §(@, 1) = W(Q) — at. Solve
for W(Q) and use the fact that 5 = 8 = constant, to find Q(¢) (and thus s(t)).




Problem 2 (Mechanics)

A particle of mass m is constrained to move on a circular wire of radius R. The
particle can slide without friction. The circular wire spins with constant angular
velocity o about a vertical diameter. The particle feels the force of gravity (mg).

(a) Write the Lagrangian for the system using & as the generalized coordinate.
‘Identify an effective potential V,5;(8) for the generalized coordinate 6.

(b) Write down the Euler Lagrange equations (do not solve them).

(c) Find constant values &;, ¢ = 1,2,---, for which 8(t) = 6;, is a solution of
the equations of motion. Express your answer in terms of w, R and g. Does the
existence of any of these values depend on the magnitude of w ?

(d) Consider now small oscillations around each of the §; identified in part (c). The
oscillations may or may not be stable, and this may also depend on the magnitude
of w. Discuss the stability of each case, find the oscillation frequencies §2; and
indicate critical values of w if any.




Problem 1 (Electromagnetism)

A sphere of radius R has a total charge @ uniformly distributed on the surface.
The sphere is rotated with angular velocity w. Align the z axis along the angular
velocity.

(a) Find the magnetic field throughout space. Do it by verifying that the following
ansatz works: the magnetic field inside is a constant, and outside it is that of a
pure magnetic dipole:
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- Use the continuity equations for the magnetic field across the surface of the sphere
to find the values of By and m in terms of w, R, @ and the velocity of light c.

(b) Now assume w is increased from zero with constant and small . The magnetic
field will change in time. Use Faraday’s law to calculate the induced electric field
on r = R as a function of §. This electric field is in the & direction.

(c) The above induced electric field produces a torque G on the sphere. Calculate
its magnitude and give its direction.

(d) Suppose now the sphere has a moment of inertia Iy about the z-axis and is
driven by an external mechanical torque @emt. Write down the equation of motion
that determines %“’t— The sphere will behave as if it had an additional moment of
inertia Imqq. Calculate 44 in terms of @, R and the speed ¢ of light.




Problem 2 (Electromagnetism)

We are given an alternating current source: I(t) = Iycoswt, and a perfectly
conducting wire of length d. We want to compare the radiation performance of
the two antennas constructed as follows. In case (I) the wire is cut into two equal
pieces and made into a center-fed linear antenna. In case (II) the wire is bent into

a circular loop of perimeter d. We assume qu =kd << 1.

First analyze case (I). Align the z-axis along the antenna with the origin at P
(the gap at P is assumed to be negligibly small). Assume the current distribution
along the wire is given by

I{z,t)=I (1 — QOTIZI) coswt .

where ag is a constant

(a) Use charge conservation to find the the value of ag and to calculate the lin-
ear charge density A(z,t) on this antenna. Define the time-independent (possibly
complex) A(z) via the usual relation A(z,¢) = R {A(2)e ™*}. Give A(z) both for z
positive and negative.

(b) Find the time-independent 7 for this center-fed radiating system (recall (t) =
R {pe~**}. Give the total radiated power Prepter— fed in terms of Iy, k and d.

(c} Does this linear antenna radiate in the magnetic dipole term? Does it radiate
in the electric quadrupole term? Explain your answers (set the origin at P).

Now analyze the circular antenna (II). Assume the current is independent of the
position in the circle and is given by Ij coswt.

(d) This antenna will radiate as a magnetic dipole. Find the total radiated power
Fiirenlar in this mode in terms of Iy, k and d. Compute the ratio Peircle / FPrenter—fed
in terms of kd. Is your answer reasonable?

(e) Does the circular antenna radiate in the electric dipole or electric quadrupole
modes? Explain.

Useful Information:
* Total power radiated in the electric dipole mode: %lﬂz

* Total power radiated in the magnetic dipole mode: %4[7'71[2

* Magnetic moment of a current loop: ﬁ%@.




Statistical Mechanics Problem 1

(a} An idealization of a vibrating violin string is a dynamical system of infinitely many

(b)

harmonic oscillators, with frequencies wy, 2w, 3wo, . . ., so that the energy levels of

the system, after subtracting the zero point energies of the oscillators, are
E(nl,ng,ng, . ) = ﬁwg(nl + 2ng + 3ng + - )

where each n; takes values 0,1,2,.... That is, the energies are F = hwoN , N =
0,1,2,... with degeneracy p(NV), the number of partitions of N. Obtain a physicist’s
quick estimate of the asymptotic behavior of p(N) as N — oo by calculating the
free energy of the system at high temperature (kT >> hwo) using the canonical en-

semble and hence deriving the entropy-energy relation.

In fact the Hardy-Ramanujan formula for p(N) is p(N) ~ ﬁv’ expm+/2N/3 as
N — oo. Is your result consistent with this? [3°7°1/n% = 72/6]

In the theory of the relativistic massless string one finds a system with energy levels
E(ny1,n2,ns,...) = hwolny + 2ny + 3ng + ---]/2 .

Use the result of (a) to write down the entropy as a function of energy for E > hwyg
and derive the temperature-energy relation. Describe what happens if this system is

used as a heat bath, sharing energy with another system.

Thermodynamic relations: S = -—2—? E=F+T8




Statistical Mechanics Problem 2

Consider a simplified model of the electronic structure of a semiconductor in which N
electrons are distributed over 2NV states, consisting of a zero-width valence band of N
degenerate states and a zero-width conduction band of N degenerate states. The energy

gap is A. The electrons are treated as noninteracting.

(a) Calculate the number of electrons in the conduction band as a function of tempera-
ture. What is the chemical potential?

(b} The electrons can make transitions between bands by emitting or absorbing pho-
tons. Show that the result of (a) and the black-body distribution of photons are

consistent with the up and down transition rates being in balance.

(c) Now suppose the conduction band consists of N states spread uniformly in energy
from A to 2A above the zero-width valence band. Calculate the chemical potential

and the number of electrons in the conduction band at temperatures < A.




Quantum Mechanics Problem 1

A system consists of three spin-% particles. The spin angular momentum vector of parti-

cle r is §() = %ha(”). The total spin is
Stot — g(1) 4 §(2) . g3
The states |my, ma, m3) are eigenstates of S,Er) with

Sgr) lm13m21m3) = mr‘h |m13m2:m3) .
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Consider the state |3p) = -\/172. [1,1,1% _\/1._5 B

(a) What is 8% - 8**|)}? [No calculation necessary.]

(b) Let R = (Ste* + z'S;°t)3. Explain why only one of the matrix elements
{my,my, ms| R|myi, ma, ms) is not zero. Show that |1) is an eigenstate of R + R1.

What are the other eigenstates?

(c) Let
4= oW ool

B = o{Do@c®
C =o®o@e®
D = oWo@s® |
Show that A, B, C, D all commute with each other and that
ABCD = Al. What is A?
(d) Show that |¢) is an eigenstate of the operators A, B, C, D. What are the eigenval-

ues?

(e) The system is prepared in the state |4). An observer measures (simultaneously) the
z component of the spin of one of the particles and the y components of the spins of
the other two. What are the possible outcomes of the measurement? If instead all

three z components are measured, what are the possible outcomes?

(1) »=(07) ==( %) (0 )

gi0j + 0;0; = 2051




Quantum Mechanics Problem 2

A particle of mass m is incident with momentum %k on a heavy scatterer. The scat-
terer is in its first excited state, with energy A above its ground state. The particle ei-
ther scatters elastically, or the scatterer makes a transition to its ground state and the
particle scatters ‘inelastically’, emerging with increased energy %ﬁi + A. All relativis-
tic and recoil effects are negligible, and both states of the scatterer have zero angular

momentum.

W1(x)
Yoz
lution of the time-independent Schrédinger equation. 11 (z) is the wavefunction of the

The process is described by a two-component wavefunction [ ], which is a so-
particle with the scatterer in its excited state, and 1o(z) with the scatterer in its ground

state.

(a) Write down appropriate asymptotic (|x] — oc) forms of 4; and %o to describe the
incident plane wave plus scattered waves. [This will require unknown functions of
angles.] Specialize to the case when [k| is so small that only the angular-momen-
tum-zero part of the incident plane wave (¢ = 0 partial wave) interacts with the
scatterer. Express the total elastic and inelastic cross sections in terms of the pa-

rameters of the asymptotic wavefunctions.

(b) Separate the angular-momentum-zero parts of 1, and v into incoming and outgo-
ing spherical waves. Find the condition imposed on your parameters by the require-
ment that the net flux of particles into a large sphere must be zero. [Do not try to
do this for the original wavefunction — only the ¢ = 0 parts.] With & fixed, what
is the maximum possible value of the inelastic cross section? When that value is

reached, what is the value of the elastic cross section?

[Note: A wavefunction ¥(z) give a flux % Im * V1. The average over angles of e**™ is

sinkr. k = |k|, r = |x|. Note the distinction between the two separations, incident plus

scattered or incoming plus outgoing.




