August 26, 2021 QM

Zhaoyi Li

Monday $8^{\text {th }}$ January, 2024

QM1

a) ${ }^{1}$

$$
\langle\bar{\alpha} \mid \bar{\beta}\rangle=e^{-\frac{|\alpha|^{2}}{2}-\frac{|\beta|^{2}}{2}+\alpha^{*} \beta}
$$

So the pure coherent states are never orthogonal for any choices of α and β.
b)

1

$$
\begin{aligned}
\left\langle\psi_{ \pm} \mid \psi_{ \pm}\right\rangle & =\frac{\mathcal{N}_{ \pm}^{2}(\beta)}{2}(1+1 \pm\langle\bar{\beta} \mid-\bar{\beta}\rangle \pm\langle\overline{-\bar{\beta}} \mid \bar{\beta}\rangle) \\
& =\mathcal{N}_{ \pm}^{2}(\beta)\left(1 \pm e^{-2|\beta|^{2}}\right)
\end{aligned}
$$

Note that $\langle\bar{\beta} \mid \overline{-\beta}\rangle=\langle\overline{-\beta} \mid \bar{\beta}\rangle$. Therefore $\mathcal{N}_{ \pm}=\frac{1}{\sqrt{1 \pm e^{-\left.2| |\right|^{2}}}}$, clearly $\mathcal{N}_{ \pm}(\infty)=1$.

2
We verify that $\left\langle\psi_{ \pm} \mid \psi_{\mp}\right\rangle=1-1+\langle\bar{\beta} \mid-\overline{-\beta}\rangle-\langle\bar{\beta} \mid \overline{-\beta}\rangle=0$.

3
$\left\langle n \mid \psi_{ \pm}\right\rangle=\frac{1}{\sqrt{2 n!\left(e^{\beta \beta^{2}}-e^{\left.-\mid \beta \beta^{2}\right)}\right.}}\left(\beta^{n} \pm(-\beta)^{n}\right)$, and

$$
P_{ \pm}(n)=\frac{e^{-|\beta|^{2}}}{2 n!\left(1 \pm e^{-2|\beta|^{2}}\right)}\left(\beta^{n} \pm(-\beta)^{n}\right)\left(\left(\beta^{*}\right)^{n} \pm\left(-\beta^{*}\right)^{n}\right)=\frac{e^{-|\beta|^{2}}}{n!\left(1 \pm e^{-2|\beta|^{2}}\right)}|\beta|^{2 n}\left(1 \pm(-1)^{n}\right)
$$

[^0](c)

1

$$
\begin{aligned}
{\left[K_{1}, K_{2}\right] } & =\frac{1}{4 i}\left(\left[a^{2}, a^{\dagger 2}\right]-\left[a^{\dagger 2}, a^{2}\right]\right) \\
& =\frac{1}{2 i}\left[a^{2}, a^{\dagger 2}\right] \\
& =-4 i K_{3}
\end{aligned}
$$

2
By uncertainty principle we know $\Delta K_{1} \Delta K_{2} \geq\left|\frac{1}{2 i}\left[K_{1}, K_{2}\right]\right|=\left|2\left\langle K_{3}\right\rangle\right|$.

3
We calculate

$$
\begin{align*}
\Delta^{2} K_{1} & =\left\langle K^{2}\right\rangle-\langle K\rangle^{2} \tag{1}\\
& =\frac{1}{2}\left(2\left|\gamma^{2}\right|+1\right) \tag{2}
\end{align*}
$$

Following the same calculation we obtain the identical result for $\Delta^{2} K_{2}$. Therefore $\Delta K_{1} \Delta K_{2}=\left|2\left\langle K_{3}\right\rangle\right|=|\gamma|^{2}+\frac{1}{2}$

QM2

a)

Note that the correct form of the wave equation should actually be $\psi(\vec{x})=e^{\frac{i}{\hbar}\left(p_{x} x+p_{z} z\right)} \phi(y) \chi_{ \pm}$. Plugging in the time-independent Schrödinger equation, we get $\frac{1}{2 m}\left(\hat{p}_{y}^{2}+p_{z}^{2}+\left(p_{x}+\frac{q}{c} B y\right)^{2}\right) \phi \mp \frac{\hbar q B}{2 m c} \phi=E \phi$.

b)

Rearranging the Schrödinger equation, we immediately recognize the form of the equation as that of a 1D SHO with angular frequency $\omega=\frac{q B}{m c}$ and a horizontal shift of $-\frac{p_{x} c}{q B}=y_{0}$ to the right:

$$
\left(\frac{\hat{p}_{y}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(y-y_{0}\right)^{2}\right) \phi=\left(E-\frac{p_{z}^{2}}{2 m} \pm \frac{\hbar \omega}{2}\right) \phi
$$

We can thus read off the spectra $E=\hbar \omega\left(n+\frac{1}{2}\right)+\frac{p_{z}^{2}}{2 m} \mp \frac{\hbar \omega}{2}=\hbar \omega\left(n+\frac{1}{2} \mp \frac{1}{2}\right)+\frac{p_{z}^{2}}{2 m}$.

c)

In the new gauge, the momentum terms are adjusted to $p_{x}+\frac{q B y}{c}-\frac{q}{c} \partial_{x} \Lambda, \hat{p}_{y}-\frac{q}{c} \partial_{y} \Lambda$, and $p_{z}-\frac{q}{c} \partial_{z} \Lambda$. However, upon evaluating these terms on the transformed wave function, ψ^{\prime}, the additional components involving Λ all cancel out, resulting in the original Schrödinger equation.

d)

Based on the given requirement, it is evident that a suitable choice for the vector potential is $B x \hat{j}$, which can be obtained through the gauge transformation $(B y, B x, 0)$ from the original vector potential, i.e. $\Lambda(\vec{x})=B x y$. In this scenario, the momentum term in the Schrödinger equation simplifies to $\frac{1}{2 m}\left(\hat{p}_{x}^{2}+p_{z}^{2}+\frac{q^{2} B^{2}}{c^{2}}\left(x-x_{0}\right)^{2}\right)$, where $x_{0}=\frac{p_{y} c}{q B}$. And the corresponding wavefunctions are given by

$$
\psi^{\prime}(\vec{x})=e^{\frac{i}{\hbar}\left(p_{y} y+p_{z} z\right)} \phi^{\prime}(x) \chi_{ \pm}
$$

Consequently, we observe an oscillator-like behavior that is confined to the x direction but may exhibit shifts in the y direction.

[^0]: ${ }^{1}$ Note that the summation given in the hint should start from $n=0$, i.e. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}$.

