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QM1

a)
First, we work out the force for both cases r < R and r ≥ R:

F =


−
rZe2

R3
r < R

−
Ze2

r2
r ≥ R

To get the potential energy for r ≥ R, we simply compute Vout = −
∫ r
∞ F (r) · dr = −

Ze2

r , where we took the reference

point V (∞) = 0. For r < R, Vin = −
∫ r
∞ F (r) · dr = −

∫ R
∞ Fout(r) · dr −

∫ r
R F (r) · dr = −

Ze2

R +
Ze2

2R3 (r
2 − R2). In

summary, we have:

V =


Ze2

2R

(
r2

R2
− 3

)
r < R

−
Ze2

r
r ≥ R

And we add the kinetic energy term, p2/2mτ , to V to get the Hamiltonian for the τ .

b)
When τ is confined inside the nucleus, the problem reduces to that of a 3D simple harmonic oscillator, where we view the

r2 term in Vin as 12mτω
2r2. Therefore, the frequency is given by ω =

√
Ze2

mτR3
. The energy is given by ωℏ(n+ 32)−

3
2
Ze2

R .

The first and second energy levels are |0⟩ (spin singlet) and a†+ |0⟩ , a
†
3 |0⟩ , a

†
− |0⟩, where a± = 1√

2
(iay ∓ ax), and it is

possible to verify these operators forms a commuting set. In other words, the first excited state has triple degeneracy,

and therefore it has to be a spin triplet: we can relate the z angular momentum to the ladder operators via the relation

Jz = ℏ(NR − NL). These three states are all diagonalized and non-degenerate under Jz . Thus the total angular

momentum is
√
ℏ2j(j + 1) = 0 for the ground state and

√
2ℏ for the excited state.
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c)
After perusing the question it seems to me that we are asked to evaluate the perturbation treating V as an SHO

potential. To do so, we evaluate directly

⟨p4⟩ =
ℏ4

4d4
⟨((a†x − ax)2 + (x ↔ y ↔ z))2⟩

=
ℏ4

4d4
((1 + 1 + 1)3 + 2 + 2 + 2)

=
15ℏ4

4d4

Note that from the first line to the second line we observe the fact that the aa† terms in the expansion contribute 1

to the final result, and the aaa†a† contribute 2, therefore ∆E = − 1532
(ℏω)2
mc2

d)

∆V = V − V ′ = Ze2((
1

r
−
1

R
) +

1

2R2
(r2 − R2)).

When this energy difference is treated as a perturbation, there is E(1) = ⟨∆V ⟩ = Ze2

2R ⟨000| (
r2

R2 +
2R
r − 3) |000⟩.
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QM2

a)
First, we note that a generic wavefunction of this space could be represented as

∑
σ ψσ |σ⟩, where σ is the spin index.

We therefore represent ψσ(x) as a two component spinor ψ(x) =

ψ0(x)
ψ1(x)

. Since the incoming particle is prepared

in the lower-energy state, we know that only the second component, which corresponds to |1⟩, exists for the incoming

wave. When x < 0, ψ attains a plane wave solution, i.e. ψx<0 =

B0e −ixp0ℏ
B1e

−ixp1
ℏ + Ae

ixp1
ℏ

, where A is the amplitude of

the incoming wave. For x > 0, we can set our wavefunction to be the similar form ψx>0 =

C0e ixp0ℏ
C1e

ixp1
ℏ

. Note that

here WLOG we can take the left-propagating wave to be 0.

b)
In the usual 1-D case, we know that for δ-function potentials V = αδ(x), where α = uσx , there is the relation

(∆ψ′)x=0 =
2mα
ℏ2 ψ(0) between ψ and its derivative (with respect to x) at x = 0. For the current case, there is the

similar relation

2mu

ℏ2
ψ1t(0) = ψ

′
0t(0)− ψ′0r (0)− ψ′0i(0)

2mu

ℏ2
ψ0t(0) = ψ

′
1t(0)− ψ′1i(0)

Plugging in our ansatz, we obtain the following equations

2mu

ℏ2
C0 =

ip1
ℏ
(C1 + B1 − A)

2mu

ℏ2
C1 =

ip0
ℏ
(C0 + B0)

where p1 =
√
2mEv . Here note that the momentum satisfies the relation p20

2m +
c
2 =

p21
2m −

c
2 . Therefore, p0 =√

2m(Ev − c) is well defined for Ev > c . Besides these two, there are two more continuity equations at x = 0:

B0 = C0

B1 + A = C1

c)

Solving these equations (we keep the parameter C0 unsolved), we obtain B0 = C0, C1 =
ip0ℏ
mu C0, and C0 =

ip1ℏ
mu B1.

From this, we have the total transmission coefficient

T =
|C0|2 + |C1|2

|A|2 =
p21ℏ2(p20ℏ2 +m2u2)
(p0p1ℏ2 +m2u2)2

=
2Evm

2ℏ2
(
2ℏ2(Ev − c) +mu2

)(
2mℏ2

√
Ev (Ev − c) +m2u2

)2
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d)

When c > Ev , we instead define p0 =
√
2m(c − Ev ) (but p1 stays the same) and the ansatz becomes ψx<0 =B0e xp0ℏ

B1e
−ixp1
ℏ + Ae

ixp1
ℏ

 and ψx>0 =

C0e −xp0ℏ
C1e

ixp1
ℏ

. Note that the higher energy state, corresponding to |0⟩, is now real.

Again, solving for the boundary conditions, we obtain C1 =
−p0ℏ
mu C0 and A =

(
mui
p1ℏ +

p0ℏ
mu

)
C0. The transmission

coefficient is then

T =
|C1|2

|A|2 =
p21p

2
0ℏ4

p21p
2
0ℏ4 +m4u4

=
4Evℏ4(c − Ev )

4Evℏ4(c − Ev ) +m2u4

Note that T only contains C1 in the denominator because the wavefunction corresponding to |0⟩ is static and has zero

probability current.
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