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QM1

a)

First, we work out the force for both cases r < R and r > R:
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To get the potential energy for r > R, we simply compute Vot = — foro F(r)-dr= —2762, where we took the reference

point V(co) = 0. For r < R, Viy = — [L F(r) - dr = —fo/: Fout(r) - dr — [LF(r) - dr = —2& 4 Z8(2 — R?). In

summary, we have:
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And we add the kinetic energy term, p?/2m,, to V to get the Hamiltonian for the 7.

b)
When T is confined inside the nucleus, the problem reduces to that of a 3D simple harmonic oscillator, where we view the
r? term in Vi, as 2 myw?r?. Therefore, the frequency is given by w = mzf,;. The energy is given by wh(n—+3)— %ZTEZ

The first and second energy levels are |0) (spin singlet) and al |0), ag 0Y, a |0), where ay = %(/ay F ax), and it is
possible to verify these operators forms a commuting set. In other words, the first excited state has triple degeneracy,
and therefore it has to be a spin triplet: we can relate the z angular momentum to the ladder operators via the relation
J, = B(Ng — N;). These three states are all diagonalized and non-degenerate under J,. Thus the total angular
momentum is \/m = 0 for the ground state and /2# for the excited state.



c)

After perusing the question it seems to me that we are asked to evaluate the perturbation treating V' as an SHO

potential. To do so, we evaluate directly
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Note that from the first line to the second line we observe the fact that the aa' terms in the expansion contribute 1
to the final result, and the aaa'a’ contribute 2, therefore AE = —33 (Zfi);

d)

1
2R2
When this energy difference is treated as a perturbation, there is £ = (AV) = é—‘f; (000| (,%22 + ? —3)|000).

AV =V -V = Ze2((% - %) + (r* — R?)).



QM2

a)

First, we note that a generic wavefunction of this space could be represented as > _ ¥, |0), where o is the spin index.

Po(x)
We therefore represent 1,(x) as a two component spinor ¥(x) = . Since the incoming particle is prepared
P1(x)
in the lower-energy state, we know that only the second component, which corresponds to |1), exists for the incoming
. . . BOeil;po . .
wave. When x < 0, 9 attains a plane wave solution, i.e. Yx<o = Cieny oy | where A is the amplitude of
1€ + Aen
Coe ™
the incoming wave. For x > 0, we can set our wavefunction to be the similar form ¥y~g = oy |- Note that
Cle h

here WLOG we can take the left-propagating wave to be 0.

b)

In the usual 1-D case, we know that for d-function potentials V' = ad(x), where o« = uoy, there is the relation
(AY') 0 = ZB29(0) between 9 and its derivative (with respect to x) at x = 0. For the current case, there is the

similar relation
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S ¥16(0) = ¥4,(0) — 5,(0) — ¥ (0)
2
5 Y0:(0) = 94(0) — ¥4,(0)

Plugging in our ansatz, we obtain the following equations
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where p; = v/2mE,. Here note that the momentum satisfies the relation 2’% —l—% = 2’)71” — % Therefore, pg =

V2m(E, — c) is well defined for E, > c. Besides these two, there are two more continuity equations at x = 0:

By = Co
Bi+A=C

c)
Solving these equations (we keep the parameter Cp unsolved), we obtain By = Co, C; = %Co, and Cy = %Bl.
From this, we have the total transmission coefficient
T |Col? + |C1/? _ p2(pah? + m?u?) _ 2E,m?m? (2n%(E, — ¢) + mu?)
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d)

When ¢ > E,, we instead define pgp = /2m(c — E,) (but p; stays the same) and the ansatz becomes ¥y <o =

Boe'r Coe 7 | ‘ ‘
. s | AN Yo = o, |- Note that the higher energy state, corresponding to [0), is now real.
BleT + Ae™n Cle n
Again, solving for the boundary conditions, we obtain C; = %‘;”’Co and A = (%‘# + ’%’j) Co. The transmission

coefficient is then
G pipah* 4E,h*(c — E,)

T — — —
A2 pipan*+ mtut  AE,h*(c— E,) + m?u*

Note that T only contains C; in the denominator because the wavefunction corresponding to |0) is static and has zero

probability current.



