Jan 27, 2021 QM

Zhaoyi Li, Hyo Sun Park, Luke Kim

Monday $8^{\text {th }}$ January, 2024

QM1

a)

First, we work out the force for both cases $r<R$ and $r \geq R$:

$$
F= \begin{cases}-\frac{r Z e^{2}}{R^{3}} & r<R \\ -\frac{Z e^{2}}{r^{2}} & r \geq R\end{cases}
$$

To get the potential energy for $r \geq R$, we simply compute $V_{\text {out }}=-\int_{\infty}^{r} F(\mathbf{r}) \cdot d \mathbf{r}=-\frac{Z e^{2}}{r}$, where we took the reference point $V(\infty)=0$. For $r<R, V_{\text {in }}=-\int_{\infty}^{r} F(\mathbf{r}) \cdot d \mathbf{r}=-\int_{\infty}^{R} F_{\text {out }}(\mathbf{r}) \cdot d \mathbf{r}-\int_{R}^{r} F(\mathbf{r}) \cdot d \mathbf{r}=-\frac{Z e^{2}}{R}+\frac{Z e^{2}}{2 R^{3}}\left(r^{2}-R^{2}\right)$. In summary, we have:

$$
V= \begin{cases}\frac{Z e^{2}}{2 R}\left(\frac{r^{2}}{R^{2}}-3\right) & r<R \\ -\frac{Z e^{2}}{r} & r \geq R\end{cases}
$$

And we add the kinetic energy term, $\mathbf{p}^{2} / 2 m_{\tau}$, to V to get the Hamiltonian for the τ.

b)

When τ is confined inside the nucleus, the problem reduces to that of a 3D simple harmonic oscillator, where we view the
 The first and second energy levels are $|0\rangle$ (spin singlet) and $a_{+}^{\dagger}|0\rangle, a_{3}^{\dagger}|0\rangle, a_{-}^{\dagger}|0\rangle$, where $a_{ \pm}=\frac{1}{\sqrt{2}}\left(i a_{y} \mp a_{x}\right)$, and it is possible to verify these operators forms a commuting set. In other words, the first excited state has triple degeneracy, and therefore it has to be a spin triplet: we can relate the z angular momentum to the ladder operators via the relation $J_{z}=\hbar\left(N_{R}-N_{L}\right)$. These three states are all diagonalized and non-degenerate under J_{z}. Thus the total angular momentum is $\sqrt{\hbar^{2} j(j+1)}=0$ for the ground state and $\sqrt{2} \hbar$ for the excited state.

c)

After perusing the question it seems to me that we are asked to evaluate the perturbation treating V as an SHO potential. To do so, we evaluate directly

$$
\begin{aligned}
\left\langle\mathbf{p}^{4}\right\rangle & =\frac{\hbar^{4}}{4 d^{4}}\left\langle\left(\left(a_{x}^{\dagger}-a_{x}\right)^{2}+(x \leftrightarrow y \leftrightarrow z)\right)^{2}\right\rangle \\
& =\frac{\hbar^{4}}{4 d^{4}}\left((1+1+1)^{3}+2+2+2\right) \\
& =\frac{15 \hbar^{4}}{4 d^{4}}
\end{aligned}
$$

Note that from the first line to the second line we observe the fact that the $a^{\dagger}{ }^{\dagger}$ terms in the expansion contribute 1 to the final result, and the $a a^{\dagger} a^{\dagger}$ contribute 2 , therefore $\Delta E=-\frac{15}{32} \frac{(\hbar \omega)^{2}}{m c^{2}}$
d)

$$
\Delta V=V-V^{\prime}=Z e^{2}\left(\left(\frac{1}{r}-\frac{1}{R}\right)+\frac{1}{2 R^{2}}\left(r^{2}-R^{2}\right)\right)
$$

When this energy difference is treated as a perturbation, there is $E^{(1)}=\langle\Delta V\rangle=\frac{Z e^{2}}{2 R}\langle 000|\left(\frac{r^{2}}{R^{2}}+\frac{2 R}{r}-3\right)|000\rangle$.

QM2

a)

First, we note that a generic wavefunction of this space could be represented as $\sum_{\sigma} \psi_{\sigma}|\sigma\rangle$, where σ is the spin index. We therefore represent $\psi_{\sigma}(x)$ as a two component spinor $\psi(x)=\binom{\psi_{0}(x)}{\psi_{1}(x)}$. Since the incoming particle is prepared in the lower-energy state, we know that only the second component, which corresponds to $|1\rangle$, exists for the incoming wave. When $x<0, \psi$ attains a plane wave solution, i.e. $\psi_{x<0}=\binom{B_{0} e^{\frac{-i x p_{0}}{\hbar}}}{B_{1} e^{\frac{-i x p_{1}}{\hbar}}+A e^{\frac{i x p_{1}}{\hbar}}}$, where A is the amplitude of the incoming wave. For $x>0$, we can set our wavefunction to be the similar form $\psi_{x>0}=\binom{C_{0} e^{\frac{i \times p_{0}}{\hbar}}}{C_{1} e^{\frac{i \times p_{1}}{\hbar}}}$. Note that here WLOG we can take the left-propagating wave to be 0 .

b)

In the usual 1-D case, we know that for δ-function potentials $V=\alpha \delta(x)$, where $\alpha=u \sigma_{x}$, there is the relation $\left(\Delta \psi^{\prime}\right)_{x=0}=\frac{2 m \alpha}{\hbar^{2}} \psi(0)$ between ψ and its derivative (with respect to x) at $x=0$. For the current case, there is the similar relation

$$
\begin{array}{r}
\frac{2 m u}{\hbar^{2}} \psi_{1 t}(0)=\psi_{0 t}^{\prime}(0)-\psi_{0 r}^{\prime}(0)-\psi_{0 i}^{\prime}(0) \\
\frac{2 m u}{\hbar^{2}} \psi_{0 t}(0)=\psi_{1 t}^{\prime}(0)-\psi_{1 i}^{\prime}(0)
\end{array}
$$

Plugging in our ansatz, we obtain the following equations

$$
\begin{aligned}
\frac{2 m u}{\hbar^{2}} C_{0} & =\frac{i p_{1}}{\hbar}\left(C_{1}+B_{1}-A\right) \\
\frac{2 m u}{\hbar^{2}} C_{1} & =\frac{i p_{0}}{\hbar}\left(C_{0}+B_{0}\right)
\end{aligned}
$$

where $p_{1}=\sqrt{2 m E_{v}}$. Here note that the momentum satisfies the relation $\frac{p_{0}^{2}}{2 m}+\frac{c}{2}=\frac{p_{1}^{2}}{2 m}-\frac{c}{2}$. Therefore, $p_{0}=$ $\sqrt{2 m\left(E_{v}-c\right)}$ is well defined for $E_{v}>c$. Besides these two, there are two more continuity equations at $x=0$:

$$
\begin{aligned}
B_{0} & =C_{0} \\
B_{1}+A & =C_{1}
\end{aligned}
$$

c)

Solving these equations (we keep the parameter C_{0} unsolved), we obtain $B_{0}=C_{0}, C_{1}=\frac{i p_{0} \hbar}{m u} C_{0}$, and $C_{0}=\frac{i p_{1} \hbar}{m u} B_{1}$. From this, we have the total transmission coefficient

$$
T=\frac{\left|C_{0}\right|^{2}+\left|C_{1}\right|^{2}}{|A|^{2}}=\frac{p_{1}^{2} \hbar^{2}\left(p_{0}^{2} \hbar^{2}+m^{2} u^{2}\right)}{\left(p_{0} p_{1} \hbar^{2}+m^{2} u^{2}\right)^{2}}=\frac{2 E_{v} m^{2} \hbar^{2}\left(2 \hbar^{2}\left(E_{v}-c\right)+m u^{2}\right)}{\left(2 m \hbar^{2} \sqrt{E_{v}\left(E_{v}-c\right)}+m^{2} u^{2}\right)^{2}}
$$

d)

When $c>E_{v}$, we instead define $p_{0}=\sqrt{2 m\left(c-E_{v}\right)}$ (but p_{1} stays the same) and the ansatz becomes $\psi_{x<0}=$ $\binom{B_{0} e^{\frac{x p_{0}}{\hbar}}}{B_{1} e^{\frac{-i x p_{1}}{\hbar}}+A e^{\frac{i \times p_{1}}{\hbar}}}$ and $\psi_{x>0}=\binom{C_{0} e^{\frac{-x p_{0}}{\hbar}}}{C_{1} e^{\frac{i x p_{1}}{\hbar}}}$. Note that the higher energy state, corresponding to $|0\rangle$, is now real. Again, solving for the boundary conditions, we obtain $C_{1}=\frac{-p_{0} \hbar}{m u} C_{0}$ and $A=\left(\frac{m u i}{p_{1} \hbar}+\frac{p_{0} \hbar}{m u}\right) C_{0}$. The transmission coefficient is then

$$
T=\frac{\left|C_{1}\right|^{2}}{|A|^{2}}=\frac{p_{1}^{2} p_{0}^{2} \hbar^{4}}{p_{1}^{2} p_{0}^{2} \hbar^{4}+m^{4} u^{4}}=\frac{4 E_{v} \hbar^{4}\left(c-E_{v}\right)}{4 E_{v} \hbar^{4}\left(c-E_{v}\right)+m^{2} u^{4}}
$$

Note that T only contains C_{1} in the denominator because the wavefunction corresponding to $|0\rangle$ is static and has zero probability current.

